

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-21

OPC Unified Architecture

Part 21: Device Onboarding

Release 1.05.04

2024-10-15

Specification
Type

Industry Standard
Specification

Comments:

Document
Number OPC 10000-21

Title: OPC Unified
Architecture
Device Onboarding

Date: 2024-10-15

Version: Release 1.05.04 Software MS-Word

 Source: OPC 10000-21 - UA Specification Part 21
- Device Onboarding 1.05.04.docx

Author: OPC Foundation Status: Release

OPC 10000-21: Device Onboarding ii 1.05.04

CONTENTS

Page

1 Scope ... 1

2 Normative references .. 1

3 Terms, definitions, and conventions ... 2

3.1 Terms and definitions ... 2
3.2 Abbreviations and symbols ... 4

4 Onboarding Model... 5

4.1 Device Lifecycle ... 5
4.2 Concepts .. 7

4.2.1 Secure Elements ... 7
4.2.2 Firmware and Applications ... 7
4.2.3 Transfer of Physical Control ... 8
4.2.4 Trust on First Use (TOFU) ... 8
4.2.5 SoftwareUpdateManager ... 9
4.2.6 Roles and Privileges .. 9

4.3 Device Workflows ... 10
4.3.1 Distribution .. 10
4.3.2 Onboarding ... 10
4.3.3 Application Setup .. 10
4.3.4 Configuration... 10
4.3.5 Operation .. 10
4.3.6 Decommissioning .. 11

5 Identities .. 11

5.1 Device Identity ... 11
5.2 ProductInstanceUri ... 12
5.3 Composite Identity .. 12

6 Ticket Semantics .. 13

6.1 Tickets ... 13
6.2 Ticket Distribution ... 13
6.3 Authentication .. 14
6.4 Acquiring and Validating Tickets ... 15

7 Device Authentication ... 16

7.1 Overview .. 16
7.2 Pull Management .. 17
7.3 Push Management .. 19
7.4 Alternate Authentication Models .. 20

7.4.1 Overview ... 20
7.4.2 FDO .. 21

8 Ticket Syntax .. 23

8.1 Signed Ticket Encoding .. 23
8.2 Ticket Types ... 24

8.2.1 EncodedTicket .. 24
8.2.2 BaseTicketType ... 25
8.2.3 DeviceIdentityTicketType ... 25
8.2.4 CompositeIdentityTicketType ... 26
8.2.5 TicketListType ... 26

OPC 10000-21: Device Onboarding iii 1.05.04

8.2.6 CertificateAuthorityType .. 27
9 Information Model ... 27

9.1 Overview .. 27
9.2 Registrar .. 27

9.2.1 Overview ... 27
9.2.2 DeviceRegistrarType ... 28
9.2.3 ProvideIdentities.. 29
9.2.4 UpdateSoftwareStatus ... 30
9.2.5 RegisterDeviceEndpoint .. 30
9.2.6 GetManagers .. 31
9.2.7 ManagerDescription... 32
9.2.8 RegisterManagedApplication.. 32
9.2.9 DeviceRegistrar ... 33
9.2.10 DeviceRegistrarAdminType .. 33
9.2.11 RegisterTickets ... 34
9.2.12 UnregisterTickets .. 34
9.2.13 DeviceRegistrationAuditEventType .. 35
9.2.14 DeviceIdentityAcceptedAuditEventType ... 35
9.2.15 DeviceSoftwareUpdatedAuditEventType ... 36

9.3 Device Configuration Application (DCA) .. 36
9.3.1 Overview ... 36
9.3.2 ProvisionableDevice .. 37
9.3.3 ProvisionableDeviceType ... 38
9.3.4 RequestTickets ... 38
9.3.5 SetRegistrarEndpoints ... 39

10 Namespaces ... 39

10.1 Namespace Metadata ... 39
10.2 Handling of OPC UA Namespaces .. 40

Annex A (normative) Namespaces and Identifiers .. 41

A.1 Namespace and Identifiers for the Onboarding Information Model 41

OPC 10000-21: Device Onboarding iv 1.05.04

FIGURES
Figure 1 – The Lifecycle of a Device ... 5

Figure 2 – Device Hardware and Software Layers ... 7

Figure 3 – Possible Transfers of Physical Control ... 8

Figure 4 – Device Authentication using Pull Management .. 17

Figure 5 – Requesting Certificates using Pull Management.. 19

Figure 6 – Device Authentication using Push Management .. 19

Figure 7 – Updating Certificates using Push Management ... 20

Figure 8 – Alternate Authentication Models with Pull Management 21

Figure 9 – Device Authentication with the FDO Protocol .. 23

Figure 10 – Registrar Address Space for Onboarding Workflow ... 28

Figure 11 – Device Address Space for Onboarding Workflows ... 37

OPC 10000-21: Device Onboarding v 1.05.04

TABLES
Table 1 – The Actors in the Device Lifecycle ... 5

Table 2 – The Stages in the Device Lifecycle .. 6

Table 3 – Well-known Roles for Onboarding.. 9

Table 4 – Privileges for Onboarding .. 9

Table 5 – RFC 7515 Header Fields ... 24

Table 6 – EncodedTicket Definition ... 25

Table 7 – BaseTicketType Structure ... 25

Table 8 – BaseTicketType Definition ... 25

Table 9 – DeviceIdentityTicketType Structure ... 25

Table 10 – DeviceIdentityTicketType Definition ... 26

Table 11 – CompositeIdentityTicketType Structure .. 26

Table 12 – CompositeIdentityTicketType Definition ... 26

Table 13 – TicketListType Structure .. 26

Table 14 – TicketListType Definition ... 27

Table 15 – CertificateAuthorityType Structure ... 27

Table 16 – CertificateAuthorityType Definition ... 27

Table 17 – DeviceRegistrarType Definition ... 28

Table 18 – ProvideIdentities Method AddressSpace Definition ... 30

Table 19 – UpdateSoftwareStatus Method AddressSpace Definition 30

Table 20 – RegisterDeviceEndpoint Method AddressSpace Definition 31

Table 21 – GetManagers Method AddressSpace Definition .. 31

Table 22 – ManagerDescription Structure ... 32

Table 23 – ManagerDescription Definition ... 32

Table 24 – RegisterManagedApplication Method AddressSpace Definition 33

Table 25 – DeviceRegistrar Definition ... 33

Table 26 – DeviceRegistrarAdminType Definition .. 33

Table 27 – RegisterTickets Method AddressSpace Definition ... 34

Table 28 – UnregisterTickets Method AddressSpace Definition .. 35

Table 29 – DeviceRegistrationAuditEventType Definition ... 35

Table 30 – DeviceIdentityAcceptedAuditEventType Definition .. 36

Table 31 – DeviceSoftwareUpdatedAuditEventType Definition ... 36

Table 32 – ProvisionableDevice Object Definition .. 38

Table 33 – ProvisionableDeviceType Definition ... 38

Table 34 – RequestTickets Method AddressSpace Definition ... 39

Table 35 – SetRegistrarEndpoints Method AddressSpace Definition 39

Table 36 – NamespaceMetadata Object for this Document .. 40

Table 37 – Namespaces used in this document ... 40

OPC 10000-21: Device Onboarding vi 1.05.04

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis
and design process to develop a standard interface to facilitate the development of applications by multiple vendors that
shall inter-operate seamlessly together.

Copyright © 2006-2024, OPC Foundation, Inc.

UAGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems --without permission
of the copyright owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies
must be obtained on an individual basis, directly from the OPC Foundation Web site
http://www.opcfoundation.org.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may
be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that
are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH
REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF
PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202 -3(a); (b) subparagraph (c)(1)(i) of the Rights
in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software
Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the
OPC Foundation, 16101 N 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830.

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these
materials. Products developed using this specification may claim compliance or conformance with this specification if and
only if the software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not
meet these requirements may claim only that the product was based on this specification and must not claim compliance
or conformance with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

OPC 10000-21: Device Onboarding vii 1.05.04

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
http://www.opcfoundation.org/errata.

http://www.opcfoundation.org/errata

OPC 10000-21: Device Onboarding viii 1.05.04

Revision 1.05.04 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis
ID

Summary

Resolution

9364 Feature Add FDO as an alternative
onboarding protocol.

Added 7.4.2.

9512 Feature Move
ApplicationConfigurationType
to Part 12.

Removed definition and
updated text in 9.3.3.

https://www.opcfoundation.org/mantis/view.php?id=9364
https://www.opcfoundation.org/mantis/view.php?id=9512

1.05.04 1 OPC 10000-21: Device Onboarding

OPC UNIFIED ARCHITECTURE

Part 21: Device Onboarding

1 Scope

This part defines the life cycle of Devices and Composites and mechanisms to verify their
authenticity, set up their security and maintain their configuration.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments
and errata) applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model

http://www.opcfoundation.org/UA/Part2/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and Conditions

http://www.opcfoundation.org/UA/Part9/

OPC 10000-12, OPC Unified Architecture - Part 12: Discovery and Global Services

http://www.opcfoundation.org/UA/Part12/

OPC 10000-14, OPC UA Specification: Part 14 - PubSub

http://www.opcfoundation.org/UA/Part14/

OPC 10000-22, OPC UA Specification: Part 22 - Base Network Model

http://www.opcfoundation.org/UA/Part22/

OPC 10000-100, OPC UA Specification: Part 100 - Devices

http://www.opcfoundation.org/UA/Part100/

ISO/IEC 11889, Information technology — Trusted platform module library

https://www.iso.org/standard/66510.html

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part2/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part9/
http://www.opcfoundation.org/UA/Part12/
http://www.opcfoundation.org/UA/Part14/
http://www.opcfoundation.org/UA/Part22
http://www.opcfoundation.org/UA/Part100/
https://www.iso.org/standard/66510.html

OPC 10000-21: Device Onboarding 2 1.05.04

802.1AR, Secure Device Identity

https://1.ieee802.org/security/802-1ar/

RFC 3161, Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)

https://tools.ietf.org/html/rfc3161

RFC 5280, Internet X.509 Public Key Infrastructure Certificate

https://tools.ietf.org/html/rfc5280

RFC 7515, JSON Web Signature (JWS)

https://tools.ietf.org/html/rfc7515

RFC 7518, JSON Web Algorithms (JWA)

https://tools.ietf.org/html/rfc7518

RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One

https://tools.ietf.org/html/rfc2045

RFC 4648, The Base16, Base32, and Base64 Data Encodings

https://tools.ietf.org/html/rfc4648

DIN 91406, Automatic identification of physical objects and information on physical objects in
IT systems

https://www.dinmedia.de/en/technical-rule/din-spec-91406/314564057

FDO, FIDO Device Onboard Specification 1.1

https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-PS-v1.1-20220419/FIDO-
Device-Onboard-PS-v1.1-20220419.html

3 Terms, definitions, and conventions

3.1 Terms and definitions

For the purposes of this document the following terms and definitions as well as the terms and
definitions given in OPC 10000-1, OPC 10000-2, OPC 10000-3, OPC 10000-4, OPC 10000-6,
OPC 10000-9 and OPC 10000-100 apply.

3.1.1
Application
a program that runs on a Device and communicates with other Applications on the network.

Note 1 to entry: Each Application has an identifier that is unique within the network.

Note 2 to entry: An OPC UA Application is an Application that supports OPC UA.

3.1.2
ApplicationUri
a globally unique identifier for an OPC UA Application running on a particular Device.

Note 3 to entry: The Application Instance Certificate has the ApplicationUri in the subjectAltName field.

3.1.3
Composite
a collection of Devices or Composites assembled into a single unit.

Note 1 to entry: Each Composite has a globally unique identifier.

Note 2 to entry: A Composite may act as a single Device when connected to a network.

Note 3 to entry: A Composite may appear as multiple Devices when connected to a network.

https://1.ieee802.org/security/802-1ar/
https://tools.ietf.org/html/rfc3161
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc4648
https://www.dinmedia.de/en/technical-rule/din-spec-91406/314564057
https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-PS-v1.1-20220419/FIDO-Device-Onboard-PS-v1.1-20220419.html
https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-PS-v1.1-20220419/FIDO-Device-Onboard-PS-v1.1-20220419.html

1.05.04 3 OPC 10000-21: Device Onboarding

3.1.4
CompositeBuilder
an organization that creates Composites.

3.1.5
CompositeInstanceUri
a globally unique resource identifier assigned by a builder to a Composite.

3.1.6
DCA Client
a DCA which is a Client and supports PullManagement.

3.1.7
DCA Server
a DCA which is a Server and supports PushManagement.

3.1.8
Device
As defined in OPC 10000-100.

Note 1 to entry: For this document a Device also executes one or more OPC UA Applications.

Note 2 to entry: a generic computer or mobile device may be a Device if it has a DeviceIdentity Certificate

3.1.9
Device Configuration Application (DCA)
a Client or Server installed on a Device used to configure other applications installed on the
same Device.

Note 1 to entry: a DCA which is a Client uses PullManagement (see 7.2) to interact with the Registrar.

Note 2 to entry: the Registrar uses PushManagement (see 7.3) to interact with a DCA which is a Server.

3.1.10
DeviceIdentity Certificate
a Certificate issued to a Device that identifies the Device.

Note 1 to entry: All DeviceIdentity Certificates have the ProductInstanceUri as a subjectAltName.

Note 2 to entry: All DeviceIdentity Certificates are IDevID or LDevID Certificates as defined by 802.1AR.

Note 3 to entry: The ProductInstanceUri is the ApplicationUri when the DeviceIdentity Certificate is used to create a
SecureChannel.

3.1.11
Distributor
an organization that re-sells Devices and/or Composites.

Note 1 to entry: A Distributor may enhance Devices and Composites by adding customized products or services .

3.1.12
Manufacturer
an organization that creates Devices.

3.1.13
OwnerOperator
an organization deploying and operating a system that comprises of Devices, Composites or
other computers connected via a network.

3.1.14
Privilege
a named set of permissions or access rights which are needed to perform a task.

3.1.15
ProductInstanceUri
a globally unique resource identifier assigned by the manufacturer to a Device.

OPC 10000-21: Device Onboarding 4 1.05.04

3.1.16
Registrar

an OPC UA Application that registers and authenticates Devices added to the network.

3.1.17
SystemIntegrator

an organization that installs and configures a system for an OwnerOperator that comprises of
Devices, Composites or other computers connected via a network.

3.1.18
SecureElement

a hardware component that protects Private Keys from unauthorized access and disclosure.

3.1.19
Ticket

a document that identifies a Device or Composite and has a DigitalSignature.

3.2 Abbreviations and symbols

API Application Programming Interface
ASN.1 Abstract Syntax Notation #1
CA Certificate Authority
CRL Certificate Revocation List
DCA Device Configuration Application
DER ASN.1 Distinguished Encoding Rules
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
ERP Enterprise Resource Planning
GDS Global Discovery Server
IDevID Initial Device Identifier
LDevID Locally Significant Device Identifier
LDS Local Discovery Server
mDNS Multicast Domain Name System
NAT Network Address Translation
PKCS Public Key Cryptography Standards
TLS Transport Layer Security
TPM Trusted Platform Module
UA Unified Architecture
URI Uniform Resource Identifier
URN Uniform Resource Name

1.05.04 5 OPC 10000-21: Device Onboarding

4 Onboarding Model

4.1 Device Lifecycle

The Onboarding model is designed to allow the configuration of a Device to be managed over
the complete lifecycle of the Device from manufacture to decommissioning. The entire lifecycle
approach is needed because Devices, unlike PC-class computers, are often shipped with
automation software pre-installed and are connected directly to sensitive networks. This
requires a process to authenticate Devices before they are given access to a sensitive network.

The complete life cycle of a Device is shown in Figure 1.

Device
Manufacture

Composite
Assembly

Distribution

Device
Onboarding

Application
Setup

Configuration Operation

Decommisioning

Integrator

Manufacturer CompositeBuilder

Operator

Distributor

Figure 1 – The Lifecycle of a Device

The actors in the Device lifecycle are described in Table 1.

Table 1 – The Actors in the Device Lifecycle

Actor Description

Device A computer that is able to communicate via a network. A Device has a unique
identifier and may have one or more Applications (see 3.1.4).

OPC 10000-21: Device Onboarding 6 1.05.04

Actor Description

Composite A collection of Devices or Composites assembled into a single unit. Each Composite
has a unique identifier and may appear as a single Device on a network or it may
appear as multiple Devices (see 3.1.3).

Application A program that runs on a Device. Each Application has a unique identifier and
communicates with other Applications on the network (see 3.1.1).

OwnerOperator An organization deploying and operating a system that comprises of Devices,
Composites or other computers connected via a network (see 3.1.13).

Manufacturer An organization that creates Devices (see 3.1.12).

CompositeBuilder An organization that creates Composites (see 3.1.4).

Distributor An organization that re-sells Devices and/or Composites. A Distributor enhances
Devices and Composites by adding customized products or services before resale
(see 3.1.11).

SystemIntegrator An organization that installs and configures a system for an OwnerOperator that
comprises of Devices, Composites or other computers connected via a network (see
3.1.17).

RegistrarAdmin A user authorized to change the configuration of the Registrar.

SoftwareUpdateAdmin A user authorized to update the firmware running on a Device.

SecurityAdmin A user authorized to make changes to security configuration for Clients and Servers
running on the network.

The stages in the lifecycle for a single Device are described in Table 2. This information model
defines mechanisms to automate some of the tasks necessary for each stage.

Table 2 – The Stages in the Device Lifecycle

Stage Description

Device Manufacture A Device is created and a DeviceIdentity Certificate is assigned. This Certificate is
provided when the Device is transferred to other actors. During Device Manufacture,
Applications may be installed on the Device. A Ticket describing the Device is created
and signed by the Manufacturer.

Composite Assembly A Composite is created from Devices and a unique identity is assigned to the
Composite. This identity is provided when the Composite is transferred to other actors.
During Composite Assembly, Applications may be installed on the Devices contained in
the Composite. A Ticket describing the Composite is created and signed by the
CompositeBuilder.

Distribution The Device or Composite is stored until it is delivered to a CompositeBuilder,
SystemIntegrator, OwnerOperator or another Distributor.

Onboarding The SystemIntegrator connects a Device to the network and verifies that the identity
reported by the Device matches the identity in a Ticket provided by the Manufacturer or
CompositeBuilder.

Application Setup The SystemIntegrator configures the Applications running on the Device or Composite
so they can communicate with other Applications running in the system. This process
includes distributing TrustLists and issuing Certificates.

Configuration The OwnerOperator performs tasks that are not done while the Device is in full
operation, such as updating firmware, installing new Applications, or changing
Application configuration.

Operation The Device does the tasks it was deployed to do.

Decommissioning The Device has all access revoked and, if the Device is still functional, then it is reset
to the default factory settings.

The commonly understood concept of “Commissioning” is represented by the Onboarding,
Application Setup and Configuration stages.

The stages in the Device lifecycle map onto workflows that are defined in this specification. The
workflows are described in 4.2.

1.05.04 7 OPC 10000-21: Device Onboarding

4.2 Concepts

4.2.1 Secure Elements

SecureElements are a hardware-based storage for cryptographic secrets that protect them
against authorized access and disclosure. The mechanisms defined for Device authentication
depend on PrivateKeys that are stored in SecureElements. PrivateKeys stored on Devices
without SecureElements can be stolen and reused on counterfeit Devices.

OwnerOperators may provision Devices without SecureElements if they have other ways to
ensure their authenticity.

4.2.2 Firmware and Applications

Every Device has multiple layers of hardware and software that are installed and managed at
different stages in the lifecycle by different actors. The layers are shown in Figure 2.

Firmware (FirmwareVersion)

Device (ModelName, HardwareVersion)

Protected Storage
(IDevID PrivateKey)

Device Configuration
Application (DCA)

Applications

DCA Security Configuration

DCA Configuration

Application2 Application3

Security Configuration2

Application2 Configuration

Security Configuration3

Application3 Configuration

Figure 2 – Device Hardware and Software Layers

A Device has firmware that is generally not changed during normal operation. Firmware updates
may be provided by the Manufacturer to correct software bugs or patch security flaws. A Device
should have a mechanism to ensure the integrity of the system, including the firmware, during
the boot process. A Device should have a way to update firmware after onboarding in the
OwnerOperator’s system.

A Device should have SecureElement storage used for security sensitive elements such as
Private Keys. This storage cannot be backed up nor is it affect by a firmware update. The Private
Key of DeviceIdentity Certificates (IDevID and LDevID) shall be placed in this storage.

A Device shall have a Device Configuration Application (DCA) which is used for Device
authentication and setup of other Applications on the Device.

A Device may have storage used for Applications and their configuration. A Device should have
a mechanism to back up and restore configurations. A Device may support multiple Applications
which have their own configuration and security configuration.

A Device has storage for the Application security configuration that does not need to be in the
protected storage. This storage is separate from the storage for Applications and configurations.
Certificates, Trust Lists, administrator credentials are examples of information that is part of the
security configuration. The Device shall have mechanisms to ensure that only authorized actors
are able to alter the security configuration or access sensitive data such as the PrivateKeys. If
a Device supports multiple Applications, the set of authorized actors may be different for each
Application.

OPC 10000-21: Device Onboarding 8 1.05.04

4.2.3 Transfer of Physical Control

Implicit in the Device lifecycle is the notion that Devices and Composites will be physically
delivered to different actors. The transfers of physical control that may occur are shown in
Figure 3.

Manufacturer

CompositeBuilder Distributor

Integrator

OwnerOperator

Figure 3 – Possible Transfers of Physical Control

In many cases, the Distributor belongs to the same organization as the Manufacturer or
CompositeBuilder. Similarly, the Integrator and the OwnerOperator may be the same
organization.

When a transfer of physical control occurs, the supplier ships the equipment (a Device or
Composite) and an electronic Ticket (see 6) that describes the equipment. The receiver may
use the Ticket to authenticate the origin of the equipment using the mechanisms defined in this
standard or save it so it can be provided when the equipment is transferred to another actor.

While an actor has physical control, the actor may Install, Provision, Configure or Operate (see
Table 2) the equipment. For example, if an actor (e.g., a CompositeBuilder) makes changes to
a Device and then transfers this Device to another actor (e.g., an OwnerOperator) then those
changes may restrict what the new owner is able to do, i.e., CompositeBuilder may install an
Application used for maintenance that the OwnerOperator cannot access.

The workflows (see 4.3) describe this process in more detail.

4.2.4 Trust on First Use (TOFU)

The onboarding process defined in this document describes how an OwnerOperator can
authenticate Devices added to the network. This document does not define any mechanisms to
allow Devices to authenticate the network it is connected to. This implies that a Device
connected to a network will allow itself to be configured via any network that it is connected to.
This behaviour is called “Trust on First Use” or TOFU.

When first connected to a network the DCA will be in an initial state where it will either attempt
to discover a network service that it can get its configuration (PullManagement, see 7.2) or wait
for another application to provide its configuration (PushManagement, see 7.3).

Once the onboarding process completes the DCA is supplied with credentials that authorize
Applications that are allowed to make changes to its security configuration. Devices should

1.05.04 9 OPC 10000-21: Device Onboarding

have a mechanism to return the DCA to an initial state which discards all configuration, including
all credentials and TrustLists that were assigned in a previous onboarding process.

The new state allows the TOFU onboarding process to start again. Note the initial state is not
the same as a factory reset which typically deletes all software installed on the Device. The
reset mechanism should require proof of physical possession of the Device to ensure it cannot
be exploited remotely.

The TOFU model exposes the Device to malicious actors that are running on the network. This
means the network used for configuration has to be protected to make it harder for a malicious
actor to gain access to the network. OwnerOperators should also have network services
designed to detect and eliminate malicious applications that attempt to interfere with the
onboarding process.

Devices may have other ways to assign the credentials provided by the onboarding process in
order to avoid the risks associated with TOFU.

4.2.5 SoftwareUpdateManager

The SoftwareUpdateManager is a system component that provides updates to firmware or
software running on a Device. The SoftwareUpdateManager may implement the standard model
defined in OPC 10000-100, however, it often will be specific to the Manufacturer. This document
defines APIs that allow any SoftwareUpdateManager to coordinate with the components defined
in this document.

The SoftwareUpdateManager is an important part of the onboarding process because it is
necessary to ensure that Devices with out-of-date firmware are not allowed on the network. The
interactions between the SoftwareUpdateManager and the other components are described in
clause 7. The SoftwareUpdateManager may not be present in systems where the
OwnerOperator has other mechanisms in place to ensure the Devices have up to date firmware.

4.2.6 Roles and Privileges

Registrars and DCA Servers need to restrict access to many of the features they provide. These
restrictions are described either by referring to well-known Roles which a Session must have
access to or by referring to named Privileges which are assigned to Sessions using mechanisms
other than the well-known Roles. Privileges are needed because not all restrictions can be
expressed simply by granting Role permissions on Nodes. For example, authenticated Devices
are granted the ability to update only their own information which means the decision on
granting access can depend on the values of the arguments passed to a Method call rather than
the permissions on the Method Node. The well-known Roles used in this document are listed in
Table 3.

 Table 3 – Well-known Roles for Onboarding

Name Description

RegistrarAdmin The Role grants rights to manage the Tickets known the Registrar and approve Devices
when automatic authentication was not possible.

SoftwareUpdateAdmin The Role grants rights to set the software status for a Device.

SecurityAdmin The Role grants the right to changes the security configuration of a Registrar or a DCA
Server. For the DCA Server this includes the right to set the location of the Registrar or
to force the Server to restart the authentication process.

The Privileges used in this document are listed in Table 4.

Table 4 – Privileges for Onboarding

Name Description

DeviceSelfAdmin The Device has rights to modify its own registration.

DCA The Client is a DCA that has rights to request Certificates and TrustLists for Applications that
it has been granted rights to.

OPC 10000-21: Device Onboarding 10 1.05.04

For a detailed description of Roles, see OPC 10000-3.

4.3 Device Workflows

4.3.1 Distribution

Distribution is the process of transferring physical control of Devices and Composites from one
organization to another. This transfer of physical control is accompanied by the electronic
transfer of Tickets as described in 6.2.

4.3.2 Onboarding

Onboarding is the process where a Device or Composite is connected to the network managed
by an organization. When this happens the authenticity of the Device is verified via interactions
with a Registrar running on the network.

Every Device has a Device Configuration Application (DCA) which interacts with the Registrar
using the interactions described in PullManagement (7.2) or PushManagement (7.3). These
interactions are secured with a DeviceIdentity Certificate.

After authentication completes, the DCA is issued a Certificate by the Registrar that allows the
DCA to configure other Applications running on the Device. The Registrar is responsible for
determining if a DCA is authorized to request Certificates on behalf a specific Application. For
example, the DCA rights may be limited to Applications with the same hostname as the DCA.

During Onboarding, the Device may need to have software updated before the process can
complete. The DCA uses the software update model described in OPC 10000-100 to manage
the software update process.

4.3.3 Application Setup

Application Setup is the process of issuing an Application Instance Certificate and a TrustList
to one or more Applications running on a Device that will allow the Applications to communicate
with other OPC UA Applications running on the network. These mechanisms are provided by
the CertificateManager Information Model and are described in OPC 10000-12.

During the Onboarding step, the DCA is issued a Certificate that allows it to request or accept
Certificates on behalf of any Application running on the Device. If the DCA is a Client it can
connect to CertificateManager and request the additional Certificates and TrustLists without the
need for additional approvals. If the DCA is a Server the CertificateManager can locate
Applications within the DCA AddressSpace and provide Certificates and TrustLists to them.

Some Applications on a Device could have access rights that prevent the Integrator or
OwnerOperator from changing the setup for the Application. This could occur if Applications are
used for maintenance or protect intellectual property.

4.3.4 Configuration

Configuration occurs when the Applications running on the Device are installed, modified,
backed up or restored. Configuration is also the mode that allows a new Device to be dropped
in as a replacement for an existing Device that is no longer functioning.

Some Devices may allow individual Applications to be configured while other Applications
continue in Operation state described in 4.3.5.

4.3.5 Operation

Operation occurs when one or more Applications on a Device are running normally performing
whatever task it was deployed to do. In this stage it is possible to update the TrustList and/or
renew the Application Instance Certificate using the CertificateManager PushManagement or
PullManagement described in OPC 10000-12. Some Devices may allow the Application
configuration to be changed while in this stage.

1.05.04 11 OPC 10000-21: Device Onboarding

4.3.6 Decommissioning

Decommissioning is the final state for the Device where it is reset to an initial state to ensure
that all sensitive data is deleted. Any permissions granted to the Device on the OwnerOperator
network are revoked.

The DeviceIdentity Certificates and their associated PrivateKeys are not affected by a reset.

A Device that was Decommissioned by mistake can be Onboarded again as described in 4.3.2.

In some cases, the OwnerOperator may wish to prevent the Device from being used again by
removing/destroying the SecureElement or some other method to physically disable the Device.

5 Identities

5.1 Device Identity

Every Device shall have an “Initial Device Identifier” (IDevID) Certificate (see 802.1AR) that is
used to prove the origin of the Device. This identity shall include a Private Key and an X.509v3
Certificate.

IDevID Certificate should have the ProductInstanceUri (see 5.2) as a uniformResourceIdentifier
in the subjectAltName field (see RFC 5280). If the IDevID Certificate does not have the
ProductInstanceUri the Device shall have an LDevID (Locally Significant Device Ident ifier)
Certificate with the ProductInstanceUri in the subjectAltName.

If an LDevID Certificate is used it should be installed by the Manufacturer and signed by the
Manufacturer CA. If the LDevID Certificate is signed by another organization, such as a
Distributor, then this implies the other organization is trusted as an authority capable of assuring
the origin of the Device.

The LDevID Certificate may use the same keypair as the IDevID Certificate. The Private Key
should be placed in SecureElement storage on the Device.

The ProductInstanceUri should also be affixed to the Device in a form that allows electronic
reading (e.g. RFID, QR code, bar code, et. al.).

The IDevID and LDevID Certificates shall conform to 802.1AR. The term DeviceIdentity
Certificate is used to describe IDevID and LDevID Certificates that meet the requirements of
this document.

The mechanisms for creating, installing, securing and revoking the IDevID and LDevID
Certificates depend on the Manufacturer, however, Devices should provide a SecureElement
storage (for an example, see ISO/IEC 11889) to ensure the associated Private Keys cannot be
copied off the Device.

The IDevID and LDevID Certificates may have expiry dates that should be far in the future
(802.1AR recommends the GeneralizedTime value 99991231235959Z in the notAfter field). The
Manufacturer is responsible for creating the Certificate Authority used to issue the Certificates.
Properly verifying the Certificates requires that the CA Certificate be acquired out-of-band via
a mechanism that allows the receiver to authenticate the origin of the CA Certificate (see 6).

Any long-lived Certificate shall only be used for Device authentication during Onboarding stage
(see Table 2).

Note that even if the IDevID or LDevID Certificate does not expire the CA Certificate could
expire. When this happens, it is no longer possible to completely verify a DeviceIdentity
Certificate. OwnerOperators need to be cautious and develop strategies to protect against risks
created by these unverifiable Devices. Manufacturers should develop strategies to ensure these
Certificates are verifiable for the expected lifetime of the Device.

The Ticket mechanism described in 6 includes the option to extend the validity period by adding
Signatures created by trusted Certificate Authorities that have not expired.

OPC 10000-21: Device Onboarding 12 1.05.04

5.2 ProductInstanceUri

ProductInstanceUri is a globally unique resource identifier assigned by the Manufacturer to a
Device. This is often stamped on the outside of a physical component and may be used for
traceability and warranty purposes. The identifier shall be a valid URI that meets the following
requirements:

Have a length which does not exceed the limits imposed by the labelling technology
chosen by the manufacturer;

Truly globally unique with a structure that enforces it.

Other standards, such as DIN 91406, define specific syntaxes that could meet these
requirements.

Examples of ProductInstanceUris:

urn:some-company.com:5ff40f78-9210-494f-8206-c2c082f0609c

urn:some-company.com:model-xyz:snr-16273849

5.3 Composite Identity

A Composite is a piece of equipment that contains a network of Devices. All of these Devices
are internal to the Composite and can be accessed by other Devices within the Composite.
Some of these Devices are also visible on an external network and have one or more
Applications that need to be provisioned. Composites are an abstraction on a network and can
only be physically accessed via one or more of the externally visible Devices.

A Machine is a common example of a Composite.

A Device which is visible on an external network may have an LDevID Certificate (see 802.1AR)
created by the CompositeBuilder that can be used to prove the Device belongs to the Composite.

The CompositeInstanceUri is an identifier for the Composite assigned by the CompositeBuilder.
All Devices in the same Composite shall have the same CompositeInstanceUri. The
CompositeInstanceUri follows the same rules as ProductInstanceUri (see 5.2).

The subjectAltName is an array of alternate names for the Device. Each entry in the
subjectAltName has a datatype and a value. An IDevID and LDevID shall have at least one URI
name which is the ProductInstanceUri. LDevIDs created for a Composite shall have at least two
URI names, the ProductInstanceUri and the CompositeInstanceUri. If a Device is in a
Composite that is contained by another Composite, then only the outermost
CompositeInstanceUri is present.

Note that the subjectAltName is a generic field that contains names used for purposes outside
the scope of this specification. The URI names with the CompositeInstanceUri and
ProductInstanceUri are identified by finding a Ticket that contains the values. URI names that
cannot be matched to a Ticket are ignored.

Composites may contain other Composites and Devices. The contained Composite may be
externally visible outside of the container Composite. In these scenarios, the CompositeBuilder
may treat the contained Composites as Devices and add additional LDevID Certificates that
identify the Devices as a component of the container Composite.

The additional LDevID Certificate has the Device ProductInstanceUri and the
CompositeInstanceUri for the containing Composite.

The CompositeBuilder is responsible for installing and setup all Devices so they can interact
with each other before the Composite is delivered.

When a Composite is connected to an external network it may be necessary to install and re-
provision some of the Applications on each externally visible Device. This requires that
additional Trust Lists be provided and new Certificates be issued to the Applications.

1.05.04 13 OPC 10000-21: Device Onboarding

CompositeBuilders may limit access to Applications running on the Devices and/or prevent
management Applications on the external network from installing new Applications.

Each Client or Server on a network has a unique ApplicationUri. An ApplicationUri chosen by
the CompositeBuilder may not be appropriate when the Composite is connected to the external
network. For this reason, all externally visible Applications shall create their default
ApplicationUri derived from the Device ProductInstanceUri which is specified in the
subjectAltName field of the DeviceIdentity Certificate.

6 Ticket Semantics

6.1 Tickets

The Device lifecycle shown in Figure 1 implies information needs to flow between businesses
when there is a transfer of physical control over a Device (see 4.2.3). How this information is
transmitted is out of scope but it could be email, a block chain ledger, cloud based webservice,
a file on a USB stick or some other mechanism. This specification defines the format of a
document that contains information that needs to be provided with a Device. A Ticket is the
term used for a document that describes one or more Devices and has a Digital Signature that
can be used to verify that the contents of the document have not been altered and that they
confirm the origin of the Device.

Tickets are long lived documents which means the signing Certificate should be issued by a
widely trusted root Certificate Authority that is likely to be in business even if the Manufacturer
or CompositeBuilder has gone out of business. Tickets allow additional Signatures to be added
at any time by an entity in the chain of physical control. The current owner of a Device validates
the Ticket by choosing a Signature created by an authority it trusts.

For example, a CompositeBuilder re-signs the Tickets for the Devices to associate the
CompositeInstanceUri with the Device Ticket (see 8.1). Customers of the CompositeBuilder will
not need a relationship with the Manufacturer of the Device to validate the Ticket.

DeviceIdentity Certificates are typically signed with a chain ending in a root CA owned by the
Manufacturer or CompositeBuilder. Tickets are typically signed with a Certificate issued to the
Manufacturer by a well-known root CA. Issuer Certificates for Certificates used to sign Tickets
shall have the cRLDistributionPoints or authorityInfoAccess extensions defined (see RFC 5280).

6.2 Ticket Distribution

When physical control over Devices and/or Composites is transferred from one organization to
another there needs to be a physical transfer of goods and an electronic transfer of the Tickets
associated with the Devices and Composites. The Tickets allow the new user to verify the
authenticity of the Devices and Composites they received by using the handshake defined in 7.

When transferring Devices, the sender provides a DeviceIdentityTicket (see 8.2.1) for each
Device. When transferring Composites, the sender provides a CompositeIdentityTicket (see
8.2.4) for each Composite and a DeviceIdentityTicket for each externally visible Device in the
Composite. The DeviceIdentityTickets and CompositeIdentityTickets should be created and
signed by the original Manufacturer and/or CompositeBuilder, however, a trusted intermediary,
such as a Distributor, could create the Tickets or add additional Signatures to the existing
Tickets.

Properly verifying the origin of Devices requires that OwnerOperators and other downstream
users of Devices have access to the Tickets and the CA that issued the signing Certificates.
This usually requires a network connection that allows the revocation status to be checked. The
Tickets are used to build a list of Devices and Composites which are allowed on the network.
The ProductInstanceUri and CompositeInstanceUri are used to correlate a Device with a Ticket.
A Ticket can be verified before the Devices are connected to the network or done when a new
Device is detected.

When an OwnerOperator initially receives a Ticket, it may wish to validate them immediately
and add a Signature with their own Certificate. A Signature shall only be applied to a Ticket that
has been validated. This allows the Device to be stored until it is needed without any further
need for access to an external system to check revocation lists . The OwnerOperator can also

OPC 10000-21: Device Onboarding 14 1.05.04

manage the issue of expiring Certificates by periodically re-validating and adding a new
Signature before the previous Certificate that created the previous Signature expires. The re-
signed Tickets should be stored in systems controlled by the OwnerOperator.

Automatic validation of Devices requires a service, called a Registrar, running on the network.
The Registrar is able to communicate with new Devices and see if they match a Ticket known
to the Registrar. The mechanism for providing the Tickets to the Registrar depends on the
Registrar. A completely automated solution would integrate the Registrar with the corporate
ERP system. This would allow the Registrar to receive the Tickets as part of the purchasing
process. When such integration is not available, the Tickets could be uploaded manually by the
technician installing the Devices or they could be read from the Device itself. If a Ticket is
provided with the Device, the RegistrarAdmin shall provide the Registrar with the CAs that can
sign Tickets which are trusted.

6.3 Authentication

When a CompositeBuilder or Integrator receives a shipment of Devices it needs to connect
them to their network and verify their authenticity. This process is automated by the use of a
Registrar that detects new Devices added to the network, inspects their DeviceIdentity
Certificates and finds the corresponding DeviceIdentityTicket. If a match was found the Device
is accepted and can be provisioned for use on the network. See 7 for a complete description of
this process.

There are two modes of operation that a Device can use depending on whether it is a Client or
a Server. Clients use PullManagement which is defined in 7.2. Servers use PushManagement
which is described in 7.3. Devices which are a Client and a Server may use either model.

The authentication process requires secure communication using OPC UA. A Device shall have
a Client or Server installed on the Device which is used for Device Onboarding, Application
Setup and Configuration. This Application is called the “Device Configuration Application” or
DCA. When a Device is first connected the DCA is configured to use any of its DeviceIdentity
Certificates as its Application Instance Certificate. Note that DeviceIdentity Certificates will not
have a DNS name or IP address because these values are not known when the DeviceIdentity
Certificate is created. Therefore, the Registrar shall suppress host name validation errors when
communicating with a DCA. The Registrar should verify that the DCA is running on a network
designated by the RegistrarAdmin as a source for new Devices.

Once the Device has been authenticated by the Registrar, it is provided with an Application
Instance Certificate, called a DCA Certificate, that is used for any subsequent communication.
The DCA Certificate will have a shorter lifespan and a CA which is managed by the
OwnerOperator. This Certificate allows all Applications running on the Device to automatically
be onboarded and configured without human intervention.

When a Device is first deployed it may have out of date firmware that needs to be upgraded
before it can participate in the network. The SoftwareUpdateManager may use the software
update model (PushManagement only) in OPC 10000-100 or it may rely on proprietary
mechanisms that are specific to the Device. The Device will not get access to the network until
the SoftwareUpdateManager indicates that the Device is up to date and whether a software
update was applied. Once the firmware is updated, the Registrar can issue an Application
Instance Certificate to the DCA.

Application Instance Certificates issued to a DCA shall not be used for communication with any
application other than the Registrar, SoftwareUpdateManager, CertificateManager or a
configuration application that acts on behalf of those agents. The CertificateManager shall
restrict the Applications that a DCA is permitted to manage. A simple restriction would limit
Certificate Requests to the host names/IP addresses that appear in the DCA Certificates. More

1.05.04 15 OPC 10000-21: Device Onboarding

complex rules could exist for complex Devices. OwnerOperators may choose to create a special
VLAN (Virtual LAN) that is only used for communication using the DCA Certificates.

The registration process here also applies to externally visible Devices that are contained in a
Composite. In these cases, the CompositeBuilder provides the list of Devices.

When a Device is first connected to the network it may not have a properly synchronized clock
(e.g., a battery backed clock set by the manufacturer). This means it will not be possible for the
Device to check the validity period of the Certificates used to establish secure communication
with the Registrar. In these situations, the Device should use a time synchronization protocol
such as NTP to update the system clock at boot. If a time synchronization server is not available
the Device may ignore the validity period for the Certificates provided by the Registrar.

6.4 Acquiring and Validating Tickets

Device authentication depends on a process for creating, distributing and validating Tickets
which contain information needed to determine if any given Device is allowed to be connected
to the OwnerOperator’s network.

There are two strategies for validating Tickets that depend on how the Tickets are acquired.
The recommended approach is to rely on an out-of-band mechanism which provides the Tickets
for the Devices and Composites that will be delivered to the facility before the Devices are
connected to the network. This could be done automatically if the Registrar is integrated with
the ERP. It can also be a manual process where a digital file is delivered to an RegistrarAdmin
that uploads it to Registrar. When a new Device is detected on the network the matching Ticket
is found which confirms that the Device is authorized.

The second strategy uses a Ticket that is distributed with the Device or Composite. This Ticket
could be stored on the Device or on physical media that was delivered with the Device. When
a Device is connected to the network the Ticket is either manually uploaded to the Registrar by
the technician installing the Device or is read from the Device during the authentication process.
For this strategy to be secure the Certificates used to sign the Tickets are provided to the
Registrar in advance by the RegistrarAdmin. A Device is authorized to be on the network if the
Ticket is valid, it matches the Device and is signed by a trusted Ticket authority.

The steps to validate a Ticket are as follows:

1) Verify that a signing Certificate is valid and trusted;

2) Verify the Signature is valid;

Tickets that are not valid shall not be used.

Tickets may have multiple signatures added by different actors in the supply chain. The
Registrar only needs to find one Signature created by a trusted authority. This assumes that
actors in the supply chain only add a Signature if at least one of the existing Signatures is valid
and created by an authority the actor trusts. Registrars shall not trust authorities unless they
are confident that the authority is properly validating Tickets before adding a Signature.

A signing Certificate is trusted if it is valid and the Certificate is recorded as a trusted Ticket
signing Certificate with the Registrar or if the issuer is a trusted root CertificateAuthority. The
latter criteria is only allowed if the Ticket was provided out of band.

The process of verifying a Certificate is described completely in OPC 10000-4, however, checks
that are specific to Application Instance Certificates do not apply (e.g. the HostName and
ApplicationUri checks).

Trusted root CertificateAuthorities used to issue Ticket signing Certificates are companies that
maintain Internet accessible online revocation status checks. For example, companies that
provide Certificates for code/document signing could be a root CertificateAuthority for Ticket
signing. Each OwnerOperator is responsible for maintaining a list of trusted root
CertificateAuthorities which are accepted by the organization.

OPC 10000-21: Device Onboarding 16 1.05.04

7 Device Authentication

7.1 Overview

Registrars shall not accept Devices they do not trust. The steps to determine trust are:

1) Read all DeviceIdentity Certificates from the Device;

2) Locate a Ticket that has a ProductInstanceUri that matches one or more DeviceIdentity
Certificates;

3) Validate the Ticket if it has not already been validated (see 6.4);

4) Select and Validate DeviceIdentity Certificate that matches the Ticket;

5) Establish a secure connection to the Device using the selected DeviceIdentity
Certificate.

6) Issue a DCA Application Instance Certificate to the Device that indicates that it has been
authenticated.

The initial communication between the Registrar and the Device is secured with a DeviceIdentity
Certificate. When using PushManagement (7.3), the Registrar is a Client that calls
GetEndpoints via connection without security on the Device Configuration Application (DCA).
The DCA shall provide at least one EndpointDescription for each DeviceIdentity Certificate. The
Registrar chooses a DeviceIdentity Certificate, establishes a secure connection using an
EndpointDescription that uses that Certificate. This provides proof that the Device possesses
the PrivateKey associated with the Certificate. The Registrar uses the SecureChannel to
provide an Application Instance Certificate to the DCA which will allow the DCA to be used to
provision the other Applications running on the Device. This Certificate is called the DCA
Certificate.

When using PullManagement (7.2) the DCA connects to the Registrar without security and calls
the ProvideIdentities Method. The Registrar chooses a valid DeviceIdentity Certificate and
returns it in the response along with a ApplicationId which is used to request new Certificates.
The DCA reconnects using a new SecureChannel with the selected Certificate which provides
proof that the Device possesses the PrivateKey associated with the Certificate. The DCA uses
the SecureChannel to request a new Application Instance Certificate which will allow the DCA
to provision the other Applications running on the Device. The DCA Application Instance
Certificate cannot be used for any action other than configuring the DCA or other Applications
managed by that DCA (for example, the host name/IP address of the Application being
configured has the same host name/IP addresses assigned to the Device where the DCA is
running).

Registrar first looks for a Certificate that has a ProductInstanceUri as a value in the
subjectAltName of the Certificate. The Registrar first searches the set of pre-validated Tickets
that were provided out-of-band for a match. If that fails it either calls the RequestTickets Method
on the DCA (see PushManagement in 7.3), or returns a code from ProvideIdentities Method
that tells the DCA to call the ProvideTickets Method (see pull management in 7.2).

If the matching DeviceIdentityTicket is referenced by a Composite Ticket (see
CompositeIdentityTicketType in 8.2.4) then the Registrar looks for a Certificate that has both
the CompositeInstanceUri and the ProductInstanceUri as values in the subjectAltName.

A Device that is part of a Composite should provide the Composite Tickets in the
RequestTickets or ProvideTickets Method.

Partial matches to DeviceIdentityTickets in CompositeIdentityTickets are rejected (i.e.
Certificates with the ProductInstanceUri but no CompositeInstanceUri).

If more than one Certificate had a matching Ticket the Registrar may choose any one of them.
The one selected is logged.

If the matching Ticket came from the Device, the Registrar validates the Ticket (see 6.4).

1.05.04 17 OPC 10000-21: Device Onboarding

Once the Registrar has found a valid Ticket that matches a DeviceIdentity Certificate, it can use
the CertificateAuthority in the Ticket to validate the selected Certificate using the process
described in OPC 10000-4 for Application Instance Certificates. The revocation status check
may be online if the Manufacturer or CompositeBuilder adds the cRLDistributionPoints or
authorityInfoAccess extensions (see RFC 5280) to the DeviceIdentity Certificates. If those
extensions do not exist then the revocation check may be skipped. Skipped revocation checks
shall be logged. If the Ticket is signed by a trusted Ticket signing authority and the timestamp
is valid then expired CA Certificates may be ignored since the lifetime of a Device is usually
longer than the lifetime of a CA Certificate.

The Registrar, and the storage it needs, is a critical part of the authentication process and
needs to be protected from access by malicious actors.

7.2 Pull Management

Clients may use pull management which is illustrated in Figure 4.

Certificate

Manager

DCA

Client
Registrar

ProvideIdentities

Selected DeviceIdentity Certificate
+ ApplicationId OR Bad_TicketsRequired

ProvideIdentities with Tickets

Create SecureChannel with Selected Identity

StartSigningRequest/FinishSigningRequest (see OPC-10000-12)

Software

Update

Manager

Check Software Status (Vendor Specific)

Download Software Update

Selected DeviceIdentity Certificate
+ ApplicationId

DCA Certificate

Find a pre-validated Ticket for
one of the Identities.

Find and validate a Ticket for
one of the Identities.

Verify that the correct Device
Identity Certificate was used to
create the SecureChannel.

GetTrustList

DCA TrustList

Update
Software

Status

GetManagers

ManagerDescriptions

opt

opt

Figure 4 – Device Authentication using Pull Management

See 7 for a complete description of the Device authentication process.

The sequence begins when the Device discovers the location of the Registrar via mDNS (see
OPC 10000-12), the SetRegistrarEndpoints Method is called (Servers only) or the Endpoints
are provided via a Device specific mechanism. The sequence automatically repeats until the
Device receives its DCA Certificate and no software update is required. Any errors occur the
sequence restarts from the beginning. Note that step requires that the DCA trust any Registrar
it finds since it does not have a valid TrustList (see 4.2.4).

If multiple Registrars are on the network, the DCA shall attempt to connect to each one until it
finds one that accepts it and allows it to request a DCA Certificate and a TrustList. Once
configured, the DCA shall not attempt to connect to Registrars that are not in the TrustList.

OPC 10000-21: Device Onboarding 18 1.05.04

Devices that support pull management shall have a way for a person with physical access to
the Device to reset the DCA TrustList and restart the Device authentication process.

The OwnerOperator should have a strategy to detect and remove rogue Registrars since the
DCA always trusts the first Registrar that provides an Application Instance Certificate.

Once connected to a Registrar the Device provides all of its DeviceIdentity Certificates to the
Registrar which then attempts to locate a valid Ticket that matches one of the Certificates. If a
Composite Ticket that matches the Device ProductInstanceUri exists then only DeviceIdentity
Certificates with the CompositeInstanceUri are considered by the Registrar.

If no Ticket is found the Registrar asks the Device to provide any Tickets that it has by returning
a Bad_TicketRequired error.

If a valid Ticket is found the Registrar returns a DeviceIdentity Certificate and ApplicationId
which the Device is expected to used to request the DCA Certificate and the DCA TrustList.

The Registrar also uses the Ticket to determine if a software update is required before it
provides a Certificate to a Device. If one is required it returns a Endpoint to the
SoftwareUpdateManager that the Device is expected to use.

When the Device connects to SoftwareUpdateManager it provides the current version number
of the software that is installed. If it is the required version, the SoftwareUpdateManager calls
the UpdateSoftwareStatus Method. Otherwise, the Device downloads the update, applies it and
then connects to SoftwareUpdateManager again and provides the new version number. The
process repeats until the required software version is installed.

The complete process for requesting a Certificate and a TrustList are described in OPC 10000-
12. Note that the DCA does not call RegisterApplication on the CertificateManager since the
Registrar does that on behalf of the DCA when it finds a valid Ticket for the Device. Note that
the Methods exposed by the Registrar rather than the CertificateManager. The expectation is
the Registrar and the CertificateManager share a common backend so Certificates and
Applications created via the Registrar will be known to the CertificateManager. In some cases,
the Registrar and the CertificateManager will be the same Server.

The GetManagers call returns the Endpoints for the CertificateManager which the DCA is
expected to use.

The DCA shall not connect to an untrusted Registrar once it has a TrustList.

The process for requesting Application Instance Certificates is shown in Figure 5.

Certificate

Manager

DCA

Client
Registrar

Create SecureChannel with DCA Certificate

ApplicationInstance Certificate

RegisterManagedApplication

ApplicationId

StartSigningRequest/FinishSigningRequest (see OPC-10000-12)

GetTrustList

TrustList

loop Until all applications registered

loop Until all application certificates updated

1.05.04 19 OPC 10000-21: Device Onboarding

Figure 5 – Requesting Certificates using Pull Management

The DCA registers all Applications it intends to manage with the Registrar which verifies that
the DCA is authorized to manage the Applications and provides ApplicationIds needed to
request Certificates from the CertificateManager. This authorization process is specific to the
Registrar implementation and can include communication with an external authorization service
or manual approval by a RegistrarAdmin.

7.3 Push Management

Servers may use PushManagement which is illustrated in Figure 6.

Registrar
DCA

Server

GetEndpoints

EndpointDescriptions

RequestTickets

Tickets

Create SecureChannel

UpdateCertificate (DCA)

Software

Update

Manager

Update Software

OK
Update

Software
Status

Certificate

Manager

CreateSigningRequest

Find a pre-validated Ticket for
one of the Identities. If none

pick any Identity

Find and validate a Ticket for
one of the Identities.

UpdateTrustList (DCA)

opt

Create SecureChannel

opt

Figure 6 – Device Authentication using Push Management

See 7 for a complete description of the authentication process.

Each of the DeviceIdentity Certificates is returned in EndpointDescriptions returned by
GetEndpoints. The Registrar looks for a pre-validated Ticket that matches the Certificate in one
of the Endpoints. If none found it chooses any one and establishes a SecureChannel and calls
RequestTickets. The Registrar needs to validate the Tickets returned by the Device which
requires access to the Certificate that created one of the Signatures and the ability to check its
revocation status.

If the Registrar finds an EndpointDescription that matches a valid Ticket it will create a new
SecureChannel using that EndpointDescription. It provides the DCA Certificate and TrustList to
the Device. Once a Device has a DCA TrustList and all software updates have been applied, it
will not accept connections from untrusted Registrars. In this state, the DCA shall only return
EndpointDescriptions that use the DCA Certificate when GetEndpoints is called.

The Registrar may then pass control to the SoftwareUpdateManager which is responsible for
checking if the Device software is up to date and uploading a new image if required. Once
complete the SoftwareUpdateManager or an agent acting on its behalf calls
UpdateSoftwareStatus Method on the Registrar.

OPC 10000-21: Device Onboarding 20 1.05.04

Once the Device has updated software the CertificateManager will be able to push Application
Instance Certificates and TrustLists for all Applications exposed via an ApplicationConfiguration
Object (see Figure 7Error! Reference source not found.) in the DCA AddressSpace. This
process is shown in Figure 7.

DCA

Server

Certificate

Manager

CreateSigningRequest/UpdateCertificate

TrustList.Open/TrustList.Write/TrustList.Close

loop

ApplyChanges

Figure 7 – Updating Certificates using Push Management

If multiple Registrars are on the network, the DCA shall accept the first one to provide an
Application Instance Certificate and a TrustList. Once configured, the DCA shall reject
connections from Registrars that are not in the TrustList. The OwnerOperator should have a
strategy to detect and remove rogue Registrars since the DCA always trusts the first Registrar
that provides a Certificate.

Some Devices with limited resources may only support a single Server which acts as both the
DCA and the operational Application. DCAs report this requirement to the Registrar by setting
the IsSingleton Property to TRUE on the ProvisionableDevice Object (see 9.3.2). Registrar that
shall provide a normal Application Instance Certificate to the DCA that cannot be used to
configure other Applications.

7.4 Alternate Authentication Models

7.4.1 Overview

There are different standards for Device Authentication which do not meet the complete set of
requirements described in this specification. However, an OwnerOperator may have reasons to
use one of these other mechanisms (i.e. they have the infrastructure and wish to reuse it).

In some cases, the OwnerOperator have a complete solution that manages the entire life cycle
of the Certificates installed on the Device. In these cases, the onboarding mechanisms
described in this specification are not used and it is responsibility of the alternate mechanism
to issue and renew Application Instance Certificates to all Applications running on the Device
and to maintain their Trust Lists.

In other cases, the alternate mechanism will only authenticate the Device and install a single
Certificate. In these cases, the mechanism described in this specification takes over and
manages the life cycle of Application Instance Certificates and the Trust Lists. This pull
management version of this case is illustrated in Figure 8.

1.05.04 21 OPC 10000-21: Device Onboarding

Certificate

Manager
DCA Client Registrar

Software

Update

Manager

Check Software Status (Vendor Specific)

Download Software Update

opt

The exact sequence,
message syntax and
protocol depends on
the authentication

mechanism choosen.

Create SecureChannel with Assigned Certificate

GetManagers

ManagerDescriptions

Create SecureChannel with Assigned Certificate

ApplicationInstance Certificate

RegisterManagedApplications

ApplicationIds

Start/Finish SigningRequest (see OPC-10000-12)

GetTrustList

TrustList

loop

Authentication

Service

Update
Software

Status

Figure 8 – Alternate Authentication Models with Pull Management

In this case, it is responsibility of the Authentication Service to verify the authenticity of the
Device and supply a Certificate to the DCA that is trusted by the Registrar,
SoftwareUpdateManager and CertificateManager. This Certificate shall also contain a
ProductInstanceUri (see 5.2) which uniquely identifies the Device.

If a software update check is required the DCA needs the Endpoint for the
SoftwareUpdateManager. If the Authentication Service cannot supply this Endpoint, the DCA
can get it from the Registrar which may be discovered with mDNS and then calling the
GetManagers Method. Once any software update is completed, the DCA calls
RegisterManagedApplications on the Registrar to get permission to request Certificates and
TrustLists on behalf of those Applications.

The location of the CertificateManager is returned by the GetManagers Method. The DCA can
use the mechanisms defined in OPC 10000-12 to request the Certificates and TrustLists for all
of the Applications which it is authorized to manage.

The Authentication Service may also provide a DCA Certificate to a Server which would then
annouce its presence via mDNS. The Registrar would then follow the process described in 7.3
to discover the Applications managed by the DCA and providing their Certificates and TrustLists.

7.4.2 FDO

7.4.2.1 Overview

FIDO Device Onboard (FDO) is an onboarding protocol from the FIDO Alliance, an open
industry association. The current version is FDO 1.1. FDO can be used as an alternate
authentication model, as described in 7.4.1.

OPC 10000-21: Device Onboarding 22 1.05.04

When a FDO Device is connected to a network it searches for one of the preconfigured DNS
addresses for a FDO Rendezvous Server (TO1 in the FDO specification). When it finds one, it
asks for the FDO Owner that has a digital document, called the FDO Ownership Voucher, that
allows the onboarding process to start. The FDO Owner registers with a FDO Rendezvous
Server when it recieves the FDO Ownership Voucher via mechanisms independent from the
delivery of the FDO Device (TO0 in the FDO specification).

The FDO Device then creates a connection to the FDO Owner (TO2 in the FDO specification).
The FDO Device identifies itself to the FDO Owner and creates a Signature with a PrivateKey
preinstalled on the FDO Device. Then the FDO Owner verifies the Signature and determines if
the FDO Device can be trusted by checking a TrustList provided to the FDO Owner. The FDO
Owner presents the FDO Ownership Voucher for FDO Device with a Signature created by the
FDO Owner. The FDO then allows communication to continue if it is able to verify the FDO
Ownership Voucher.

The FDO Ownership Voucher is a digital document distributed by the manufacturer and is
delivered via a mechanism independent from FDO as the FDO Device moves through the supply
chain. The FDO Ownership Voucher has multiple Signatures provided by each intermediary in
the supply chain. However, the FDO Device only knows the first PublicKey in the chain but this
is sufficient to allow the FDO Device to verify the entire chain when it receives it from the FDO
Owner.

Once FDO authentication is complete, the FDO Device creates an encrypted tunnel that is used
to complete the onboarding process. The information exchanged during this stage can be
application specific. FDO ServiceInfo Modules (FSIMs) are subprotocols that defined the
messages exchanged during the onboarding process. The FSIMs to use are negotiated once
the encrypted tunnel has been established.

7.4.2.2 Integration with the Registrar

Figure 9 illustrates the handoff from the FDO protocol to the mechanisms defined in this
document.

1.05.04 23 OPC 10000-21: Device Onboarding

Certificate

Manager
FDO Device Registrar

Software

Update

Manager

Check Software Status (Vendor Specific)

Download Software Update

opt

FDO TO2 protocol
with FSIMs.

Create SecureChannel with Assigned Certificate

GetManagers

ManagerDescriptions

Create SecureChannel with Assigned Certificate

ApplicationInstance Certificate

RegisterManagedApplications

ApplicationIds

Start/Finish SigningRequest (see OPC-10000-12)

GetTrustList

TrustList

loop

FDO Owner

Update
Software

Status

Figure 9 – Device Authentication with the FDO Protocol

Specifically, the FDO Owner supplies the FDO device with a Certificate that can be used to
create a SecureChannel with the Registrar. The Registrar is preconfigured with the CA
Certificate used by the FDO Owner to issue the Certificates to authenticated FDO Devices. The
FDO Owner uses a FSIM (fdo.csr) that creates a new LDevID that can be installed on the FDO
Device as part of the onboarding process described in 7.4.2.1. This LDevID shall contain the
information specified in Clause 5. The rest of onboarding process is the same as when the OPC
UA device authentication mechanisms are used.

A FDO Device that supports integration with OPC UA shall have an OPC UA Client that can
communicate with the Registrar. The OPC UA Client (a.k.a., a DCA using Pull Management as
described in 7.2) may be installed by the Manufacturer or could be installed by the FDO Owner
as part of the FDO onboarding process.

8 Ticket Syntax

8.1 Signed Ticket Encoding

All Tickets (see 8.2.3 and 8.2.4) are encoded as JSON documents. These JSON documents
secured with digital signature applied to the general serialization described by RFC 7515. The
structure of an RFC 7515 document is as follows.

 {

 "payload":"BASE64URL(UTF8(JSON encoded Ticket))",

 "signatures":[

 {"protected":"BASE64URL(UTF8(JSON encoded protected header))",

 "header": JSON encoded header,

OPC 10000-21: Device Onboarding 24 1.05.04

 "signature":" BASE64URL(JWS Signature)"},

 ...

 {"protected":"BASE64URL(UTF8(JSON encoded protected header))",

 "header": JSON encoded header,

 "signature":" BASE64URL(JWS Signature)"}]

 }

Appendix A.6 in RFC 7515 provides an example of a document encoding using this structure.

The BASE64URL transform which allows binary data (e.g., UTF-8 encoded text) to be
represented as ASCII.

The Ticket is encoded as a JSON object using the reversible JSON encoding defined in OPC
10000-6. This JSON object is converted to an UTF-8 byte array and then BASE64URL before
being added to the document.

The protected header specifies the signing Certificate and other information needed to verify
the Signature. The required fields are defined in Table 5.

The unprotected header is generally not used; however, it could be used for additional vendor
specific information such as a RFC 3161 timestamp or other anti-forgery or validation metadata.

A Signature is computed on the following byte array:

 <protected header>.<payload>

Tickets may have additional signatures added by any actor in the supply chain. For example, a
CompositeBuilder shall add Signatures to all Tickets for Devices incorporated into the
Composite. The protected header shall have the CompositeInstanceUri.

The Certificate and algorithms used to create the payload Signature are the same as the
Certificate and algorithms used to create the RFC 7515 Signature. The RFC 7515 header
provides the information needed to calculate the size of payload Signature.

Table 5 – RFC 7515 Header Fields

Header Field Type Description

alg String The cryptographic algorithm used to sign the Ticket.

The possible values are defined by RFC 7518.

The default when using RSA public keys is “RS256”.

x5c String [] The signing Certificate and all of its issuers.

Each array element is base64 encoded (see RFC 4648) DER encoding.

The first element is the signing Certificate.

cty String The type of Ticket contained in the payload.

This is media type defined by RFC 2045 with the leading “application/” omitted.

The subtype is "opc-ticket+json".

The type parameter is the name from BrowseName of the Structure.

For example, the value for a DeviceIdentityTicketType is:
 opc-ticket+json;type=DeviceIdentityTicketType

opc-uri String The CompositeInstanceUri if the Signature was created by a CompositeBuilder who
has incorporated the Device into a Composite.

8.2 Ticket Types

8.2.1 EncodedTicket

The EncodedTicket is a simple DataType representing a JSON encoded Ticket.

Its representation in the AddressSpace is defined in Table 8.

1.05.04 25 OPC 10000-21: Device Onboarding

Table 6 – EncodedTicket Definition

Attribute Value

BrowseName 0:EncodedTicket

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:String DataType defined in OPC 10000-5.

Conformance Units

Onboarding Ticket Reader

8.2.2 BaseTicketType

The BaseTicketType is an abstract base class for a Ticket.

The fields of this DataType are defined in Table 7.

Table 7 – BaseTicketType Structure

Name Type Description

BaseTicketType 0:Structure Subtype of the Structure DataType defined in OPC 10000-5.

 manufacturerName 0:String The name of the Manufacturer for the Device.

 modelName 0:String The model name assigned by the Manufacturer.

Not specified if no model name was assigned or known.

 modelVersion 0:String The model version assigned by the Manufacturer.

Not specified if no model version was assigned or known.

 hardwareRevision 0:String The hardware revision assigned by the Manufacturer.

Not specified if no hardware revision was assigned or known.

 softwareRevision 0:String The software revision assigned by the Manufacturer.

May not be the same as the current version of software installed
on the Device.

Not specified if no software revision was assigned or known.

 serialNumber 0:String The serial number assigned by the Manufacturer.

Not specified if no serial number was assigned or known.

 manufactureDate 0:DateTime When the Device was manufactured.

DateTime.MinValue if the date is not known.

 authorities 2:CertificateAuthorityType [] A list of CAs need to validate DeviceIdentity Certificates on the
Device that were installed when the Ticket was created.

Its representation in the AddressSpace is defined in Table 8.

Table 8 – BaseTicketType Definition

Attribute Value

BrowseName 2:BaseTicketType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the Structure DataType defined in OPC 10000-5.

Conformance Units

Onboarding Ticket Reader

8.2.3 DeviceIdentityTicketType

The DeviceIdentityTicketType describes a single Device produced by a Manufacturer.

The fields of this DataType are defined in Table 9.

Table 9 – DeviceIdentityTicketType Structure

Name Type Description

DeviceIdentityTicketType 0:Structure Subtype of the 2:BaseTicketType DataType defined in 8.2.1.

 productInstanceUri 0:UriString The ProductInstanceUri for the Device.

Its representation in the AddressSpace is defined in Table 10.

OPC 10000-21: Device Onboarding 26 1.05.04

Table 10 – DeviceIdentityTicketType Definition

Attribute Value

BrowseName 2:DeviceIdentityTicketType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the BaseTicketType DataType defined in 8.2.1.

Conformance Units

Onboarding Ticket Reader

8.2.4 CompositeIdentityTicketType

The CompositeIdentityTicketType describes a single Composite produced by a
CompositeBuilder.

The fields of this DataType are defined in Table 11.

Table 11 – CompositeIdentityTicketType Structure

Name Type Description

CompositeIdentityTicketType 0:Structure Subtype of the 2:BaseTicketType DataType defined in 8.2.2.

 compositeInstanceUri 0:UriString The ProductInstanceUri assigned to the Composite.

This value appears in LDevID Certificates assigned to Devices
by the CompositeBuilder (see 5.3).

 devices 0:UriString [] A list of ProductInstanceUris for the Devices in the Composite
that are externally visible.

 composites 0:UriString [] A list of CompositeInstanceUris for the sub-components in the
Composite that are externally visible.

Its representation in the AddressSpace is defined in Table 12.

Table 12 – CompositeIdentityTicketType Definition

Attribute Value

BrowseName 2:CompositeIdentityTicketType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the BaseTicketType DataType defined in 8.2.2.

Conformance Units

Onboarding Ticket Reader

8.2.5 TicketListType

The TicketListType describes a list of Devices and Composites which are part of a shipment
from one organization to another.

The fields of this DataType are defined in Table 13.

Table 13 – TicketListType Structure

Name Type Description

TicketListType 0:Structure Subtype of the 0:Structure DataType defined in OPC 10000-5.

 devices 0:EncodedTicket [] A list of signed DeviceIdentityTickets.

The format is described in 8.1.

 composites 0:EncodedTicket [] A list of signed CompositeIdentityTickets.

The format is described in 8.1.

Its representation in the AddressSpace is defined in Table 14.

1.05.04 27 OPC 10000-21: Device Onboarding

Table 14 – TicketListType Definition

Attribute Value

BrowseName 2:TicketListType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the Structure DataType defined in OPC 10000-5.

Conformance Units

Onboarding Ticket Reader

8.2.6 CertificateAuthorityType

The CertificateAuthorityType describes a Certificate Authority (CA) used to issue Certificates
to Devices, Composites or to organizations that create Tickets.

The fields of this DataType are defined in Table 15.

Table 15 – CertificateAuthorityType Structure

Name Type Description

CertificateAuthorityType 0:Structure Subtype of the 0:Structure DataType defined in OPC 10000-5.

 authorityCertificate 0:ByteString The DER encoded Certificate used to issue Certificates.

 issuerCertificates 0:ByteString [] The DER encoded form of the Issuer for the authorityCertificate.

It should include the entire chain.

Its representation in the AddressSpace is defined in Table 16.

Table 16 – CertificateAuthorityType Definition

Attribute Value

BrowseName 2:CertificateAuthorityType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:Structure DataType defined in OPC 10000-5.

Conformance Units

Onboarding Ticket Reader

9 Information Model

9.1 Overview

The workflows described in 4.3 define interactions between OPC UA Applications. Implementing
these workflows requires an OPC UA Information Model. This section builds on existing
Information Models and defines the additional types and instances needed to completely
implement the workflows. Clause 9.2 defines the Information Model implemented in a Registrar
that provides support for PullManagement defined in 7.2. Clause 9.3 defines the Information
Model implemented in a DCA Server that provides support for PushManagement defined in 7.3.

9.2 Registrar

9.2.1 Overview

The Registrar described in 7 is a Server that implements the Information Model shown in Figure
10. This Information Model allows new Devices to use pull management described in 7.2 to
authenticate themselves. It also allows Endpoints for new Devices to be manually registered
for PushManagement when no multicast discovery mechanism is available.

OPC 10000-21: Device Onboarding 28 1.05.04

0:Objects

2:DeviceRegistrar
2:Device

RegistrarType

2:Provide
Identities

0:BaseObjectType

2:Register
DeviceEndpoint

2:Administration

2:RegisterTickets

2:UnregisterTickets

2:DeviceRegistrar
AdminType

2:Ticket
Authorities

2:DeviceIdentity
Authorities

0:TrustListType

2:GetManagers

2:Register
ManagedApplication

2:Update
SoftwareStatus

Figure 10 – Registrar Address Space for Onboarding Workflow

9.2.2 DeviceRegistrarType

The DeviceRegistrarType ObjectType represents an entity that provides the services needed
when authenticating Devices on a network. The ObjectType is defined in Table 17.

Table 17 – DeviceRegistrarType Definition

Attribute Value

BrowseName 2:DeviceRegistrarType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the 0:BaseObjectType defined in OPC 10000-5.

0:HasComponent Method 2:ProvideIdentities Defined in 9.2.3. Mandatory

0:HasComponent Method 2:UpdateSoftwareStatus Defined in 9.2.4. Mandatory

0:HasComponent Method 2:RegisterDeviceEndpoint Defined in 9.2.5. Mandatory

0:HasComponent Method 2:GetManagers Defined in 9.2.6. Mandatory

0:HasComponent Method 2:RegisterManagedApplication Defined in 9.2.8. Mandatory

0:HasComponent Object 2:Administration 2:DeviceReg
istrarAdminT
ype

Optional

Conformance Units

Onboarding Registrar PullManagement

The ProvideIdentities Method allows a Device to request that it be authenticated so it can have
access to the network.

The UpdateSoftwareStatus Method is used by the SoftwareUpdateManager to tell the Registrar
that the Device has up to date software.

The RegisterDeviceEndpoint Method allows an administration Client to provide the location of
a Device on the network that needs to be authenticated. The expectation is calling this Method
would start a background task register the Device using PullManagement. If an administration

https://profiles.opcfoundation.org/conformanceunit/4437

1.05.04 29 OPC 10000-21: Device Onboarding

Client needs to register many Devices it can call the RegisterDeviceEndpoint Method multiple
times in a single Call request.

The GetManagers Method returns the location of the SoftwareUpdateManager and
CertificateManager which an authenticated DCA needs to use to complete the onboarding
process.

The RegisterManagedApplication Method allows the DCA to register Applications that it needs
to manage with the Registrar.

The Administration Object allows an administration Client to manage Tickets and Certificates
received out of band that are needed for the automated registration process.

9.2.3 ProvideIdentities

The ProvideIdentities Method allows a Device to request that it be authenticated so it can have
access to the network. It is called by a Device using PullManagement to provide the Registrar
with its DeviceIdentity Certificates. The Registrar follows the process described in 7 to select
and validate one of the Certificates.

This Method shall be called from an authenticated SecureChannel.

Signature

ProvideIdentities (

 [in] 0:ByteString [] identities,

 [in] 0:ByteString [] issuers,

 [in] 0:EncodedTicket [] tickets,

[out] 0:ByteString selectedIdentity,

[out] 2:BaseTicketType matchingTicket,

[out] 0:NodeId applicationId,

[out] 2:ManagerDescription softwareUpdateManager

);

Argument Description

identities The DER encoded DeviceIdentity Certificates issued to the Device.
The first Certificates shall be the IDevID Certificates.

issuers The DER encoded Certificates needed to verify the DeviceIdentity Certificates.
Certificates that cannot be verified are ignored.

tickets The signed Tickets stored on the Device.
This argument may be null. If the Registrar returns a Bad_TicketRequired error
this Method needs to called again with any available Tickets.
Tickets that cannot be verified are ignored.

selectedIdentity The DER encoded DeviceIdentity Certificate that the DCA needs to use to
complete the registration process.

matchingTicket The Ticket describing the Device which the Registrar accepted.

applicationId The identifier assigned by the CertificateManager to the Device.
This identifier is needed to request Certificates from the CertificateManager.

softwareUpdateManager The Endpoint for the SoftwareUpdateManager which the caller contacts to
complete the onboarding process.
Set to NULL if a software update is not required or not supported.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_CertificateInvalid None of the identity Certificates can be verified.

Bad_TicketRequired The Device has to provide a Ticket before it can be accepted.

Bad_NotFound No valid Ticket was found.

Table 18 specifies the AddressSpace representation for the ProvideIdentities Method.

OPC 10000-21: Device Onboarding 30 1.05.04

Table 18 – ProvideIdentities Method AddressSpace Definition

Attribute Value

BrowseName 2:ProvideIdentities

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable 0:InputArguments 0:Argument [] 0:PropertyType Mandatory

HasProperty Variable 0:OutputArguments 0:Argument [] 0:PropertyType Mandatory

9.2.4 UpdateSoftwareStatus

The UpdateSoftwareStatus Method allows a Client to provide the firmware status for a Device
on the network.

The Client may be the SoftwareUpdateManager (see 4.2.5) or other administrative application
that allows a human to provide information about a manual process.

This Method shall be called from an authenticated SecureChannel and from a Session that has
access to the SoftwareUpdateAdmin Role (see 4.2.6).

Signature

UpdateSoftwareStatus(

 [in] 0:String productInstanceUri,

 [in] 0:Boolean status,

 [in] 0:String softwareRevision

);

Argument Description

productInstanceUri The unique identifier for the Device.

status The status of the software.
If TRUE the firmware is up to date, otherwise, an update is required before the
Device can be used on the network.

softwareRevision The version of the software which is running on the Device (status=TRUE) or
needs to be installed on the Device (status=FALSE).

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The Session does not have the permissions needed to call the Method.

Bad_NotFound The productInstanceUri does not refer to a known Device.

Table 19 specifies the AddressSpace representation for the UpdateSoftwareStatus Method.

Table 19 – UpdateSoftwareStatus Method AddressSpace Definition

Attribute Value

BrowseName 2:UpdateSoftwareStatus

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument [] 0:PropertyType Mandatory

9.2.5 RegisterDeviceEndpoint

The RegisterDeviceEndpoint Method allows a Client to provide the location of a Device on the
network that needs to be authenticated.

The Client may be an engineering tool or other administrative application that allows a human
to provide information that cannot be discovered automatically.

Once the Registrar knows the location of a Device it schedules a task that uses
PushManagement to complete the onboarding process.

This Method shall be called from an authenticated SecureChannel and from a Session that has
access to the RegistrarAdmin Role (see 4.2.6).

Signature

1.05.04 31 OPC 10000-21: Device Onboarding

RegisterDeviceEndpoint (

 [in] 0:ApplicationDescription application

);

Argument Description

application The Server which allows a Device to be authenticated via the Push Model.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The Session does not have the permissions needed to call the Method.

Table 20 specifies the AddressSpace representation for the RegisterDeviceEndpoint Method.

Table 20 – RegisterDeviceEndpoint Method AddressSpace Definition

Attribute Value

BrowseName 2:RegisterDeviceEndpoint

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument [] 0:PropertyType Mandatory

9.2.6 GetManagers

The GetManagers Method allows a Registrar to provide the location of other managers on a
network which are needed to support onboarding of Devices. The managers have network
Endpoints that may support non-OPC UA protocols. The DCA has knowledge of what managers
it can use and what protocol they use.

The response is a list of ManagerDescriptions that includes a URI which defines the purpose of
the manager and a flag indicating whether the DCA is required to interact with the manager to
complete the onboarding process.

Each ManagerDescription has 1 or more URLs which are network Endpoints accessible to the
DCA.

This Method shall be called from an authenticated SecureChannel and from a Session that has
access to the DCA Privilege (see 4.2.6).

Signature

GetManagers (

 [out] 2:ManagerDescription [] managers

);

Argument Description

managers The managers which the DCA has access to.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The Session does not have the permissions needed to call the Method.

Table 21 specifies the AddressSpace representation for the GetManagers Method.

Table 21 – GetManagers Method AddressSpace Definition

Attribute Value

BrowseName 2:GetManagers

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:OutputArguments 0:Argument [] 0:PropertyType Mandatory

OPC 10000-21: Device Onboarding 32 1.05.04

9.2.7 ManagerDescription

The ManagerDescription provides metadata and the location of a manager on the network such
as a SoftwareUpdateManager or a CertificateManager.

The following purposeUris are defined by this specification:

http://opcfoundation.org/UA/Onboarding/CertificateManager

http://opcfoundation.org/UA/Onboarding/SoftwareUpdateManager

Other purposes may be defined by the Registrar.

The fields of this DataType are defined in Table 7.

Table 22 – ManagerDescription Structure

Name Type Description

ManagerDescription 0:Structure Subtype of the Structure DataType defined in OPC 10000-5.

 name 0:LocalizedText A human readable name for the manager.

 isRequired 0:Boolean If TRUE then interaction with this manager is required to complete the
onboarding process.

 purposeUri 0:UriString A unique identifier for the purpose of the manager.

 protocolUri 0:UriString A unique identifier for the communication protocol used by the manager
endpoints. If not specified the protocol is OPC UA.

 endpointUrls 0:String [] A list of network endpoints.

Its representation in the AddressSpace is defined in Table 23.

Table 23 – ManagerDescription Definition

Attribute Value

BrowseName 2:ManagerDescription

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the Structure DataType defined in OPC 10000-5.

Conformance Units

Onboarding Registrar PullManagement

9.2.8 RegisterManagedApplication

The RegisterManagedApplication Method allows a DCA using pull management to register an
application that it manages. The Registrar creates whatever records are needed in the
CertificateManager and returns the ApplicationIds which are needed to request Certificates and
TrustLists for the Application.

The ProtocolUri is only specified when the Application does not support OPC UA. It indicates
what protocol the Application supports.

The Registrar shall have some mechanism to verify that a DCA is authorized to manage
Application (e.g. DNS name check, pre-populated permission list, human review, et. al.). If the
DCA is not authorized the Registrar returns Bad_RequestNotAllowed.

This Method shall be called from an authenticated SecureChannel and from a Session that has
access to the DCA Privilege (see 4.2.6).

Signature

RegisterManagedApplication (

 [in] 3:ApplicationRecordDataType application,

 [in] 0:UriString protocolUri,

 [out] 0:NodeId applicationId

);

https://profiles.opcfoundation.org/conformanceunit/4437

1.05.04 33 OPC 10000-21: Device Onboarding

Argument Description

application The application to register.

protocolUri The URI identifying the protocol supported by a non-OPC UA Application.

applicationId The applicationId assigned to the application.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The caller does not have the rights to call the Method.

Bad_RequestNotAllowed The caller is not allowed to manage the specified Application.

Table 24 specifies the AddressSpace representation for the RegisterManagedApplication
Method.

Table 24 – RegisterManagedApplication Method AddressSpace Definition

Attribute Value

BrowseName 2:RegisterManagedApplication

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument [] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument [] 0:PropertyType Mandatory

9.2.9 DeviceRegistrar

The DeviceRegistrar Object is a well-known Object that is present in the AddressSpace of a
Server that is a Registrar. It is formally defined in Table 25.

Table 25 – DeviceRegistrar Definition

Attribute Value

BrowseName 2:DeviceRegistrar

TypeDefinition 2:DeviceRegistrarType defined in 9.2.2.

References Node Class BrowseName DataType TypeDefinition Modelling Rule

OrganizedBy the Objects Object defined in OPC 10000-5.

Conformance Units

Onboarding Registrar PullManagement

9.2.10 DeviceRegistrarAdminType

The DeviceRegistrarAdminType ObjectType that provides an interface to manage the TrustLists
and Tickets used by the Registrar when authenticating Devices on a network. The ObjectType
is defined in Table 26

Table 26 – DeviceRegistrarAdminType Definition

Attribute Value

BrowseName 2:DeviceRegistrarAdminType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasComponent Method 2:RegisterTickets Defined in 9.2.11. Mandatory

0:HasComponent Method 2:UnregisterTickets Defined in 9.2.12. Mandatory

0:HasComponent Object 2:TicketAuthorities 0:TrustListType Mandatory

0:HasComponent Object 2:DeviceIdentityAuthorities 0:TrustListType Mandatory

Conformance Units

Onboarding Registrar Administration

The RegisterTickets Method allows an administration Client to provide a list of Tickets for
Devices and Composites that it is expecting to install on the network. Any Device which matches
one of these Tickets will be accepted automatically.

The UnregisterTickets Method allows an administration Client to remove Tickets for Devices
and Composites that it previously provided. Removing Tickets does not affect Devices that were
previously accepted using the Tickets.

https://profiles.opcfoundation.org/conformanceunit/4437

OPC 10000-21: Device Onboarding 34 1.05.04

The TicketAuthorities Object allows an administration Client to manage the Certificates for
authorities that sign Tickets. If a Device provides a Ticket, it is accepted automatically if and
only if the signing Certificate is in this list.

The DeviceIdentityAuthorities Object allows an RegistrarAdmin manage the trusted
DeviceIdentity Certificates. This list can contain individual DeviceIdentity Certificates that have
a valid Ticket or it can contain the issuers for DeviceIdentity Certificates that are provided out
of band.

9.2.11 RegisterTickets

The RegisterTickets Method allows an administration Client to provide a list of Tickets for
Devices and Composites that it is expecting to install on the network. Any Device which can be
correlated with one of these Tickets will be accepted automatically.

This Method validates each Ticket. Invalid Tickets are rejected. Validation errors are returned
in the results output argument.

This Method shall be called from a Session that has access to the RegistrarAdmin Role (see
4.2.6).

Signature

RegisterTickets (

 [in] 0:EncodedTicket [] tickets,

[out] 0:StatusCode [] results

);

Argument Description

tickets The signed Tickets which should be treated as trusted.

results The result of the Ticket validation process described in 6.4.
If validation fails the returned value is Bad_TicketInvalid.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The Client is not authorized to update the set of known Tickets.

Table 27 specifies the AddressSpace representation for the RegisterTickets Method.

Table 27 – RegisterTickets Method AddressSpace Definition

Attribute Value

BrowseName 2:RegisterTickets

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument [] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument [] 0:PropertyType Mandatory

9.2.12 UnregisterTickets

The UnregisterTickets Method allows a RegistrarAdmin to remove Tickets for Devices and
Composites that it previously provided. Removing Tickets does not affect Devices that were
previously accepted using the Tickets.

If the Ticket does not exist an error is returned in the results output argument.

If an error processing a Ticket occurs the error for that Ticket is returned in the results argument.
If a Ticket does not exist the error is Bad_NotFound.

This Method shall be called from a Session that has access to the RegistrarAdmin Role (see
4.2.6).

Signature

UnregisterTickets (

1.05.04 35 OPC 10000-21: Device Onboarding

 [in] 0:EncodedTicket [] tickets,

[out] 0:StatusCode [] results

);

Argument Description

tickets The signed Tickets which should no longer be treated as trusted.

results Indicates whether a previously registered Ticket was found.
If not found the returned value is Bad_NotFound.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The Client is not authorized to update the set of known Tickets.

Table 28 specifies the AddressSpace representation for the UnregisterTickets Method.

Table 28 – UnregisterTickets Method AddressSpace Definition

Attribute Value

BrowseName 2:UnregisterTickets

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument [] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument [] 0:PropertyType Mandatory

9.2.13 DeviceRegistrationAuditEventType

This abstract Event is a base type for events raised when a change affecting Device registration
occurs.

This Event and its subtypes are security related and Servers shall only report them to Sessions
with access to the SecurityAdmin Role.

Its representation in the AddressSpace is formally defined in Table 29.

Table 29 – DeviceRegistrationAuditEventType Definition

Attribute Value

BrowseName 2:DeviceRegistrationAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:AuditEventType defined in OPC 10000-5.

0:HasProperty Variable 2:ProductInstanceUri 0:UriString 0:PropertyType Mandatory

0:HasSubtype ObjectType 2:DeviceIdentityAcceptedAuditEv
entType

Defined in 9.2.14.

0:HasSubtype ObjectType 2:DeviceSoftwareUpdatedAuditE
ventType

Defined in 9.2.15.

Conformance Units

Onboarding Registrar PullManagement

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in OPC
10000-5.

The ProductInstanceUri Property specifies the identity for the Device that was affected by the
change.

9.2.14 DeviceIdentityAcceptedAuditEventType

This abstract Event is raised when the Registrar accepts a DeviceIdentity. This occurs when
the Registrar finds a matching validated Ticket and is able to validate a DeviceIdentity
Certificate.

This Event and it subtypes are security related and Servers shall only report them to Sessions
with access to the SecurityAdmin Role.

https://profiles.opcfoundation.org/conformanceunit/4437

OPC 10000-21: Device Onboarding 36 1.05.04

Its representation in the AddressSpace is formally defined in Table 30.

Table 30 – DeviceIdentityAcceptedAuditEventType Definition

Attribute Value

BrowseName 2:DeviceIdentityAcceptedAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 2:DeviceRegistrationAuditEventType defined in 9.2.13

0:HasProperty Variable 2:Certificate 0:ByteString 0:PropertyType Mandatory

0:HasProperty Variable 2:Ticket 0:EncodedTicket 0:PropertyType Mandatory

0:HasProperty Variable 2:Composite 0:EncodedTicket 0:PropertyType Mandatory

Conformance Units

Onboarding Registrar PullManagement

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in OPC
10000-5.

The Certificate Property is the DER encoded form of the DeviceIdentity Certificate that was
validated.

The Ticket Property is the signed Ticket (see 8.1) that matches the DeviceIdentity Certificate.

The Composite Property is the signed Ticket (see 8.1) for the Composite that contains the
Device.

9.2.15 DeviceSoftwareUpdatedAuditEventType

This abstract Event is raised when the Registrar receives the Device software status has
changed.

This Event and it subtypes are security related and Servers shall only report them to Sessions
with access to the SecurityAdmin Role.

Its representation in the AddressSpace is formally defined in Table 31.

Table 31 – DeviceSoftwareUpdatedAuditEventType Definition

Attribute Value

BrowseName 2:DeviceSoftwareUpdatedAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 2:DeviceRegistrationAuditEventType defined in 9.2.13.

0:HasProperty Variable 2:Status 0:Boolean 0:PropertyType Mandatory

0:HasProperty Variable 2:SoftwareRevision 0:String 0:PropertyType Mandatory

Conformance Units

Onboarding Registrar PullManagement

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in OPC
10000-5.

The Status Property is the TRUE if the Device firmware is up to date.

The SoftwareRevision Property is the version of the firmware that was installed (if
Status=TRUE) or needs to be installed (Status=FALSE).

9.3 Device Configuration Application (DCA)

9.3.1 Overview

Devices that support PushManagement described in 7.3 have a Server that implements the
Information Model shown in Figure 11. This Information Model allows Registrars to authenticate
Devices on the network. It also allows the location of the Registrars to be manually provided if
the Device needs to use PullManagement and no multicast discovery capabilities are available.

https://profiles.opcfoundation.org/conformanceunit/4437
https://profiles.opcfoundation.org/conformanceunit/4437

1.05.04 37 OPC 10000-21: Device Onboarding

0:Server

0:Provisionable
DeviceType

0:SetRegistrar
Endpoints

0:Request
Tickets

Application1

Application2

Application3

0:Server
ConfigurationType

0:Server
Configuration

0:Application
ConfigurationType

0:Resources

0:Provisionable
Device

0:CertificateGroups

0:Default
ApplicationGroup

0:CertificateGroups

0:Alternate
ApplicationGroup

Figure 11 – Device Address Space for Onboarding Workflows

The ProvisionableDevice Object shall be organized by the Resources Object (see OPC 10000-
22) used to provision the Device the Server is running on. It is an instance of the
ProvisionableDeviceType ObjectType which defines Methods used by the Registrar when it
authenticates a Device.

The DefaultApplicationGroup Object is a well-known CertificateGroup that stores the
Application Instance Certificate and TrustList for the DCA provided by the Registrar. This group
is initially empty when the Device is first connected to the network. It is updated by the Registrar
when the Device Authentication process completes.

The Applications that may be configured via the Server are components of the
ProvisionableDevice Object. They are instances of ApplicationConfigurationType. The Server
itself is configured via the ServerConfiguration Object. Some DCAs may choose to have
CertificateGroups for individual Applications organized by the CertificateGroups Folder in the
ServerConfiguration Object. In these cases, DCAs shall add a Reference from the
ServerConfiguration CertificateGroups Folder to the CertificateGroup Object under the
Application.

9.3.2 ProvisionableDevice

This Object is an instance of ProvisionableDeviceType. It is the well-known Resource which is
used to authenticate a Device using PushManagement.

It is a target of an Organizes Reference from the Resources Object defined in OPC 10000-22.

It It is defined in Table 32.

OPC 10000-21: Device Onboarding 38 1.05.04

Table 32 – ProvisionableDevice Object Definition

Attribute Value

BrowseName 0:ProvisionableDevice

TypeDefinition 0:ProvisionableDeviceType defined in 9.3.3.

References Node Class BrowseName DataType TypeDefinition Modelling Rule

OrganizedBy the Resources Object defined in OPC 10000-22.

Conformance Units

Onboarding Server PushManagement

9.3.3 ProvisionableDeviceType

The ProvisionableDeviceType ObjectType defines Objects that support PushManagement
described in 7.3. The ObjectType is defined in Table 33.

Table 33 – ProvisionableDeviceType Definition

Attribute Value

BrowseName 0:ProvisionableDeviceType

IsAbstract False

References Node
Class

BrowseName Data
Type

TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasProperty Variable 0:IsSingleton 0:Boolean 0:PropertyType Mandatory

0:HasComponent Method 0:RequestTickets Defined in 9.3.4. Mandatory

0:HasComponent Method 0:SetRegistrarEndpoints Defined in 9.3.5. Optional

0:HasComponent Object 0:<ApplicationName> 0:ApplicationC
onfigurationTy
pe

OptionalPlaceh
older

Conformance Units

Onboarding Server PushManagement

The IsSingleton Property indicates whether the DCA and the operational Server are the same.
If TRUE, it tells Registrar that the DCA Certificate shall have rights associated with a Application
Instance Certificate (i.e., it cannot be used to access the security configuration for different
Applications). A ProvisionableDevice shall not have any ApplicationConfiguration components
if IsSingleton is TRUE.

The RequestTickets Method allows the Registrar to request the list of Tickets stored on the
Device.

The SetRegistrarEndpoints Method allows a configuration Client to provide the location of one
or more Registrars which the Device can use to authenticate itself via PullManagement.

The :<ApplicationName> Objects defines an API which represents the configuration of an Client
or Server running on a Device. The ApplicationConfigurationType is defined in OPC 10000-12.

9.3.4 RequestTickets

The RequestTickets Method allows a Client to request the list of Tickets stored on the Device.
It is called by a Client using PushManagement to authenticate a Device. The Registrar follows
the process described in 7 to select and validate one of the Tickets.

Signature

RequestTickets (

 [out] 0:EncodedTicket [] tickets

);

Argument Description

tickets The signed Tickets stored on the Device.

Method Result Codes (defined in Call Service)

Result Code Description

1.05.04 39 OPC 10000-21: Device Onboarding

Table 34 specifies the AddressSpace representation for the RequestTickets Method.

Table 34 – RequestTickets Method AddressSpace Definition

Attribute Value

BrowseName 0:RequestTickets

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:OutputArguments 0:Argument [] 0:PropertyType Mandatory

9.3.5 SetRegistrarEndpoints

The SetRegistrarEndpoints Method allows a Client to provide the location of one or more
Registrars which the Device can use to authenticate itself via PullManagement.

The Client may be an engineering tool or other administrative application that allows a human
to provide information that cannot be discovered automatically.

This Method shall be called from a Session that has access to the SecurityAdmin Role (see
4.2.6).

Signature

SetRegistrarEndpoints (

 [in] 0:ApplicationDescription [] registrars

);

Argument Description

registrars The Servers which allow a Device to be authenticated via PullManagement.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The Session does not have rights to call the Method.

Table 35 specifies the AddressSpace representation for the SetRegistrarEndpoints Method.

Table 35 – SetRegistrarEndpoints Method AddressSpace Definition

Attribute Value

BrowseName 0:SetRegistrarEndpoints

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument [] 0:PropertyType Mandatory

10 Namespaces

10.1 Namespace Metadata

Table 36 defines the namespace metadata for this document. The Object is used to provide
version information for the namespace and an indication about static Nodes. Static Nodes are
identical for all Attributes in all Servers, including the Value Attribute. See OPC 10000-5 for
more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a
component of the Namespaces Object that is part of the Server Object. The
NamespaceMetadataType ObjectType and its Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML
file. The UANodeSet XML schema is defined in OPC 10000-6.

OPC 10000-21: Device Onboarding 40 1.05.04

Table 36 – NamespaceMetadata Object for this Document

Attribute Value

BrowseName 2:http://opcfoundation.org/UA/Onboarding/

Property DataType Value

0:NamespaceUri 0:String http://opcfoundation.org/UA/Onboarding/

0:NamespaceVersion 0:String 1.05.04

0:NamespacePublicationDate 0:DateTime 2024-12-01

0:IsNamespaceSubset 0:Boolean False

0:StaticNodeIdTypes 0:IdType [] 0

0:StaticNumericNodeIdRange 0:NumericRange []

0:StaticStringNodeIdPattern 0:String

10.2 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming
authorities. The Attributes NodeId and BrowseName are identifiers. A Node in the UA
AddressSpace is unambiguously identified using a NodeId. Unlike NodeIds, the BrowseName
cannot be used to unambiguously identify a Node. Different Nodes may have the same
BrowseName. They are used to build a browse path between two Nodes or to define a standard
Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName.
However, if they want to provide a standard Property, its BrowseName shall have the
namespace of the standards body although the namespace of the NodeId reflects something
else, for example the EngineeringUnits Property. All NodeIds of Nodes not defined in this
document shall not use the standard namespaces.

Table 37 provides a list of namespaces and their index used for BrowseNames in this document.
The default namespace of this document is not listed since all BrowseNames without prefix use
this default namespace.

Table 37 – Namespaces used in this document

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

http://opcfoundation.org/UA/Onboarding/ 2 2:Registrar

http://opcfoundation.org/UA/GDS/ 3 3:ApplicationRecordDataType

http://opcfoundation.org/UA/Onboarding

1.05.04 41 OPC 10000-21: Device Onboarding

Annex A
(normative)

Namespaces and Identifiers

A.1 Namespace and Identifiers for the Onboarding Information Model

This document defines Nodes which are part of the base OPC UA Specification. The numeric
identifiers for these Nodes are part of the complete list of identifiers defined in OPC 10000-6.

In addition, this document defines Nodes which are only used by Registrars.

The NamespaceUri for any Device Onboarding specific NodeIds is:

 http://opcfoundation.org/UA/Onboarding/

The CSV released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Onboarding.NodeIds.csv

NOTE The latest CSV that is compatible with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.Onboarding.NodeIds.csv

A computer processible version of the Information Model defined in the Onboarding namespace
is also provided. It follows the XML Information Model schema syntax defined in OPC 10000-6.

The Information Model Schema for this version of the document (including any revisions,
amendments or errata) can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Onboarding.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of the document can be found here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.Onboarding.NodeSet2.xml

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Onboarding.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Onboarding.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Onboarding.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Onboarding.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Onboarding.NodeSet2.xml

	1 Scope
	2 Normative references
	3 Terms, definitions, and conventions
	3.1 Terms and definitions
	3.2 Abbreviations and symbols

	4 Onboarding Model
	4.1 Device Lifecycle
	4.2 Concepts
	4.2.1 Secure Elements
	4.2.2 Firmware and Applications
	4.2.3 Transfer of Physical Control
	4.2.4 Trust on First Use (TOFU)
	4.2.5 SoftwareUpdateManager
	4.2.6 Roles and Privileges

	4.3 Device Workflows
	4.3.1 Distribution
	4.3.2 Onboarding
	4.3.3 Application Setup
	4.3.4 Configuration
	4.3.5 Operation
	4.3.6 Decommissioning

	5 Identities
	5.1 Device Identity
	5.2 ProductInstanceUri
	5.3 Composite Identity

	6 Ticket Semantics
	6.1 Tickets
	6.2 Ticket Distribution
	6.3 Authentication
	6.4 Acquiring and Validating Tickets

	7 Device Authentication
	7.1 Overview
	7.2 Pull Management
	7.3 Push Management
	7.4 Alternate Authentication Models
	7.4.1 Overview
	7.4.2 FDO
	7.4.2.1 Overview
	7.4.2.2 Integration with the Registrar

	8 Ticket Syntax
	8.1 Signed Ticket Encoding
	8.2 Ticket Types
	8.2.1 EncodedTicket
	8.2.2 BaseTicketType
	8.2.3 DeviceIdentityTicketType
	8.2.4 CompositeIdentityTicketType
	8.2.5 TicketListType
	8.2.6 CertificateAuthorityType

	9 Information Model
	9.1 Overview
	9.2 Registrar
	9.2.1 Overview
	9.2.2 DeviceRegistrarType
	9.2.3 ProvideIdentities
	9.2.4 UpdateSoftwareStatus
	9.2.5 RegisterDeviceEndpoint
	9.2.6 GetManagers
	9.2.7 ManagerDescription
	9.2.8 RegisterManagedApplication
	9.2.9 DeviceRegistrar
	9.2.10 DeviceRegistrarAdminType
	9.2.11 RegisterTickets
	9.2.12 UnregisterTickets
	9.2.13 DeviceRegistrationAuditEventType
	9.2.14 DeviceIdentityAcceptedAuditEventType
	9.2.15 DeviceSoftwareUpdatedAuditEventType

	9.3 Device Configuration Application (DCA)
	9.3.1 Overview
	9.3.2 ProvisionableDevice
	9.3.3 ProvisionableDeviceType
	9.3.4 RequestTickets
	9.3.5 SetRegistrarEndpoints

	10 Namespaces
	10.1 Namespace Metadata
	10.2 Handling of OPC UA Namespaces

	Annex A (normative) Namespaces and Identifiers
	A.1 Namespace and Identifiers for the Onboarding Information Model

