

F O U N D A T I O N

®

O
P

C
 U

A
 S

p
e

c
ific

a
tio

n

OPC 10000-12

OPC Unified Architecture

Part 12: Discovery and Global Services

Release 1.05.04

2024-10-15

Specificatio
n Type

Industry Standard
Specification

Comments:

Document
Number OPC 10000-12

Title: OPC Unified Architecture
Discovery and Global
Services

Date: 2024-10-15

Version: Release 1.05.04 Software MS-Word

 Source: OPC 10000-12 - UA Specification Part 12
- Discovery and Global Services
1.05.04.docx

Author: OPC Foundation Status: Release

OPC 10000-12: Discovery, Global Services ii 1.05.04

CONTENTS

Page

1 Scope .. 1

2 Normative references .. 1

3 Terms, definitions, and conventions ... 2

3.1 Terms and definitions.. 2

3.2 Abbreviations and symbols ... 5

4 The Discovery Process .. 6

4.1 Overview .. 6

4.2 Registration and Announcement of Applications .. 6

4.2.1 Overview ... 6

4.2.2 Hosts with a LocalDiscoveryServer .. 6

4.2.3 Hosts without a LocalDiscoveryServer ... 7

4.3 The Discovery Process for Clients to Find Servers .. 7

4.3.1 Overview ... 7

4.3.2 Simple Discovery with a DiscoveryUrl .. 8

4.3.3 Local Discovery ... 8

4.3.4 MulticastSubnet Discovery ... 9

4.3.5 Global Discovery ... 9

4.3.6 Combined Discovery Process for Clients ... 10

4.4 The Discovery Process for Reverse Connections .. 11

4.4.1 Overview ... 11

4.4.2 Out-of-band Discovery ... 11

4.4.3 Global Discovery for Reverse Connections .. 11

5 Local Discovery Server .. 12

5.1 Overview .. 12

5.2 Security Considerations for Multicast DNS .. 12

5.3 Network Architectures ... 12

5.3.1 Overview ... 12

5.3.2 Single MulticastSubnet .. 12

5.3.3 Multiple MulticastSubnet .. 13

5.3.4 No MulticastSubnet ... 14

5.3.5 Domain Names and MulticastSubnets .. 14

6 Global Discovery Server .. 15

6.1 Overview .. 15

6.2 Roles and Privileges ... 15

6.3 Client connections to global services .. 15

6.4 Local Discovery .. 16

6.5 Application Registration Workflow ... 17

6.6 Information Model ... 19

6.6.1 Overview ... 19

6.6.2 Directory .. 20

6.6.3 DirectoryType .. 20

6.6.4 FindApplications .. 21

6.6.5 ApplicationRecordDataType .. 22

6.6.6 RegisterApplication .. 22

6.6.7 UpdateApplication ... 23

OPC 10000-12: Discovery, Global Services iii 1.05.04

6.6.8 UnregisterApplication .. 24

6.6.9 GetApplication ... 24

6.6.10 QueryApplications ... 25

6.6.11 QueryServers (deprecated) .. 27

6.6.12 ApplicationRegistrationChangedAuditEventType.. 28

7 Certificate Management ... 28

7.1 Overview .. 28

7.2 Roles and Privileges ... 29

7.3 Pull Management .. 30

7.4 Push Management .. 32

7.5 Application Setup .. 33

7.6 Pull Management Workflow ... 33

7.7 Push Management Workflow ... 36

7.8 Common Information Model .. 38

7.8.1 Overview ... 38

7.8.2 TrustLists .. 38

7.8.3 CertificateGroups .. 46

7.8.4 CertificateTypes .. 48

7.9 Information Model for Pull Certificate Management ... 52

7.9.1 Overview ... 52

7.9.2 CertificateDirectoryType .. 52

7.9.3 StartSigningRequest .. 54

7.9.4 StartNewKeyPairRequest .. 55

7.9.5 FinishRequest ... 57

7.9.6 RevokeCertificate .. 58

7.9.7 GetCertificateGroups ... 59

7.9.8 GetCertificates .. 59

7.9.9 GetTrustList ... 60

7.9.10 GetCertificateStatus .. 60

7.9.11 CheckRevocationStatus ... 61

7.9.12 CertificateRequestedAuditEventType ... 62

7.9.13 CertificateDeliveredAuditEventType ... 62

7.10 Information Model for Push Certificate Management ... 63

7.10.1 Overview ... 63

7.10.2 Transaction Lifecycle ... 63

7.10.3 ServerConfiguration ... 65

7.10.4 ServerConfigurationType ... 65

7.10.5 UpdateCertificate ... 66

7.10.6 GetCertificates .. 68

7.10.7 ApplyChanges ... 68

7.10.8 CreateSigningRequest ... 69

7.10.9 CancelChanges ... 70

7.10.10 GetRejectedList ... 71

7.10.11 ResetToServerDefaults .. 71

7.10.12 ApplicationConfigurationType .. 72

7.10.13 ApplicationConfigurationFolderType .. 72

7.10.14 ManagedApplications... 73

7.10.15 TransactionDiagnosticsType .. 73

7.10.16 TransactionErrorType .. 74

OPC 10000-12: Discovery, Global Services iv 1.05.04

7.10.17 CertificateUpdateRequestedAuditEventType .. 74

7.10.18 CertificateUpdatedAuditEventType .. 74

8 KeyCredential Management ... 75

8.1 Overview .. 75

8.2 Roles and Privileges ... 75

8.3 Pull Management .. 76

8.4 Push Management .. 77

8.5 Information Model for Pull Management .. 77

8.5.1 Overview ... 77

8.5.2 KeyCredentialManagementFolderType .. 78

8.5.3 KeyCredentialManagement .. 78

8.5.4 KeyCredentialServiceType ... 78

8.5.5 StartRequest ... 79

8.5.6 FinishRequest ... 80

8.5.7 Revoke .. 81

8.5.8 KeyCredentialAuditEventType ... 82

8.5.9 KeyCredentialRequestedAuditEventType ... 82

8.5.10 KeyCredentialDeliveredAuditEventType ... 82

8.5.11 KeyCredentialRevokedAuditEventType .. 83

8.6 Information Model for Push Management .. 83

8.6.1 Overview ... 83

8.6.2 KeyCredentialConfigurationFolderType .. 83

8.6.3 CreateCredential ... 84

8.6.4 KeyCredentialConfiguration ... 84

8.6.5 KeyCredentialConfigurationType ... 85

8.6.6 GetEncryptingKey .. 85

8.6.7 UpdateCredential ... 86

8.6.8 DeleteCredential .. 87

8.6.9 KeyCredentialUpdatedAuditEventType .. 87

8.6.10 KeyCredentialDeletedAuditEventType ... 87

9 AuthorizationServices .. 88

9.1 Overview .. 88

9.2 Roles and Privileges ... 88

9.3 Implicit .. 89

9.4 Explicit .. 90

9.5 Chained .. 90

9.6 Information Model for Requesting Access Tokens ... 91

9.6.1 Overview ... 91

9.6.2 AuthorizationServicesFolderType .. 92

9.6.3 AuthorizationServices .. 92

9.6.4 AuthorizationServiceType .. 92

9.6.5 RequestAccessToken .. 93

9.6.6 GetServiceDescription ... 94

9.6.7 AccessTokenIssuedAuditEventType .. 94

9.7 Information Model for Configuring Servers .. 95

9.7.1 Overview ... 95

9.7.2 AuthorizationServiceConfigurationFolderType ... 95

9.7.3 AuthorizationServices .. 96

9.7.4 AuthorizationServiceConfigurationType ... 96

OPC 10000-12: Discovery, Global Services v 1.05.04

10 Namespaces.. 96

10.1 Namespace Metadata ... 96

10.2 Handling of OPC UA Namespaces .. 97

Annex A (informative) Deployment and Configuration .. 98

A.1 Firewalls and Discovery .. 98

A.2 Resolving References to Remote Servers ... 100

Annex B (normative) NodeSet and Constants .. 101

B.1 NodeSet ... 101

B.2 Numeric Node Ids ... 101

Annex C (normative) OPC UA Mapping to mDNS ... 102

C.1 DNS Server (SRV) Record Syntax .. 102

C.2 DNS Text (TXT) Record Syntax .. 102

C.3 DiscoveryUrl Mapping ... 103

Annex D (normative) Server Capability Identifiers .. 104

Annex E (normative) DirectoryServices .. 105

E.1 Global Discovery via Other Directory Services .. 105

E.2 UDDI... 105

E.3 LDAP .. 106

Annex F (normative) Local Discovery Server ... 108

F.1 Certificate Store Directory Layout ... 108

F.2 Installation Directories on Windows .. 108

Annex G (normative) Application Setup .. 110

G.1 Application Setup with PullManagement .. 110

G.2 Application setup with the PushManagement .. 110

G.3 Setting Permissions .. 111

Annex H (informative) Comparison with RFC 7030 .. 112

H.1 Overview .. 112

H.2 Obtaining CA Certificates .. 112

H.3 Initial Enrolment .. 112

H.4 Client Certificate Reissuance .. 112

H.5 Server Key Generation .. 113

H.6 Certificate Signing Request (CSR) Attributes Request .. 113

OPC 10000-12: Discovery, Global Services vi 1.05.04

FIGURES
Figure 1 – The Registration Process with an LDS ... 7

Figure 2 – The Simple Discovery Process ... 8

Figure 3 – The Local Discovery Process ... 9

Figure 4 – The MulticastSubnet Discovery Process ... 9

Figure 5 – The Global Discovery Process ... 10

Figure 6 – The Discovery Process for Clients .. 10

Figure 7 – The Global Discovery Process for Reverse Connections 11

Figure 8 – The Single MulticastSubnet Architecture .. 13

Figure 9 – The Multiple MulticastSubnet Architecture .. 13

Figure 10 – The No MulticastSubnet Architecture ... 14

Figure 11 – The Relationship Between GDS and other components 16

Figure 12 – Application Registration Workflow .. 18

Figure 13 – The Address Space for the GDS .. 20

Figure 14 – The Pull Management Model for Certificates .. 31

Figure 15 – The Push Certificate Management Model ... 32

Figure 16 – Certificate Pull Management Workflow ... 34

Figure 17 – The Pull Management Options for Key Pair Creation .. 35

Figure 18 – The Certificate Push Management Workflow .. 37

Figure 19 – The Push Management Options for Key Pair Creation .. 38

Figure 20 – The Certificate Management AddressSpace for the GlobalDiscoveryServer 52

Figure 21 – The AddressSpace for the Server that supports Push Management 63

Figure 22 – The Transaction Lifecycle when using PushManagement 64

Figure 23 – The Pull Model for KeyCredential Management .. 76

Figure 24 – The Push Model for KeyCredential Management .. 77

Figure 25 – The Address Space used for Pull KeyCredential Management 78

Figure 26 – The Address Space used for Push KeyCredential Management 83

Figure 27 – Roles and AuthorizationServices .. 88

Figure 28 – Implicit Authorization .. 89

Figure 29 – Explicit Authorization .. 90

Figure 30 – Chained Authorization .. 91

Figure 31 – The Model for Requesting Access Tokens from AuthorizationServices 92

Figure 32 – The Model for Configuring Servers to use AuthorizationServices 95

Figure 33 – Discovering Servers Outside a Firewall .. 98

Figure 34 – Discovering Servers Behind a Firewall ... 98

Figure 35 – Using a Discovery Server with a Firewall .. 99

Figure 36 – Following References to Remote Servers ... 100

Figure 37 – The UDDI or LDAP Discovery Process ... 105

Figure 38 – UDDI Registry Structure ... 106

Figure 39 – Sample LDAP Hierarchy ... 107

OPC 10000-12: Discovery, Global Services vii 1.05.04

TABLES
Table 1 – Well-known Roles for a GDS ... 15

Table 2 – Privileges for a GDS .. 15

Table 3 – Application Registration Workflow Steps ... 19

Table 4 – Directory Object Definition ... 20

Table 5 – DirectoryType Definition .. 20

Table 6 – FindApplications Method AddressSpace Definition .. 21

Table 7 – ApplicationRecordDataType Structure ... 22

Table 8 – ApplicationRecordDataType Definition .. 22

Table 9 – RegisterApplication Method AddressSpace Definition .. 23

Table 10 – UpdateApplication Method AddressSpace Definition .. 24

Table 11 – UnregisterApplication Method AddressSpace Definition 24

Table 12 – GetApplication Method AddressSpace Definition ... 25

Table 13 – ApplicationRecordDataType to ApplicationDescription Mapping 26

Table 14 – QueryApplications Method AddressSpace Definition .. 27

Table 15 – ApplicationRecordDataType to ServerOnNetwork Mapping 27

Table 16 – QueryServers Method AddressSpace Definition .. 28

Table 17 – ApplicationRegistrationChangedAuditEventType Definition 28

Table 18 – Well-known Roles for a CertificateManager ... 29

Table 19 – Well-known Roles for Server managed by a CertificateManager 30

Table 20 – Privileges for a CertificateManager .. 30

Table 21 – Certificate Pull Management Workflow Steps ... 35

Table 22 – TrustListType Definition ... 39

Table 23 – OpenWithMasks Method AddressSpace Definition ... 40

Table 24 – CloseAndUpdate Method AddressSpace Definition .. 41

Table 25 – AddCertificate Method AddressSpace Definition .. 42

Table 26 – RemoveCertificate Method AddressSpace Definition ... 43

Table 27 – TrustListDataType Structure .. 43

Table 28 – TrustListDataType Definition ... 43

Table 29 – TrustListMasks Enumeration ... 44

Table 30 – TrustListMasks Definition .. 44

Table 31 – TrustListValidationOptions Values ... 44

Table 32 – TrustListValidationOptions Definition ... 45

Table 33 – TrustListOutOfDateAlarmType definition .. 45

Table 34 – TrustListUpdateRequestedAuditEventType Definition .. 45

Table 35 – TrustListUpdatedAuditEventType Definition ... 46

Table 36 – CertificateGroupType Definition ... 46

Table 37 – GetRejectedList Method AddressSpace Definition ... 48

Table 38 – CertificateGroupFolderType Definition ... 48

Table 39 – CertificateType Definition .. 48

Table 40 – ApplicationCertificateType Definition ... 49

Table 41 – HttpsCertificateType Definition .. 49

Table 42 – RsaMinApplicationCertificateType Definition ... 49

OPC 10000-12: Discovery, Global Services viii 1.05.04

Table 43 – RsaSha256ApplicationCertificateType Definition ... 50

Table 44 – EccApplicationCertificateType Definition ... 50

Table 45 – EccNistP256ApplicationCertificateType Definition ... 50

Table 46 – EccNistP384ApplicationCertificateType Definition ... 50

Table 47 – EccBrainpoolP256r1ApplicationCertificateType Definition 51

Table 48 – EccBrainpoolP384r1ApplicationCertificateType Definition 51

Table 49 – EccCurve25519ApplicationCertificateType Definition ... 51

Table 50 – EccCurve448ApplicationCertificateType Definition .. 51

Table 51 – CertificateDirectoryType ObjectType Definition.. 53

Table 52 – StartSigningRequest Method AddressSpace Definition .. 55

Table 53 – StartNewKeyPairRequest Method AddressSpace Definition 57

Table 54 – FinishRequest Method AddressSpace Definition .. 58

Table 55 – RevokeCertificate Method AddressSpace Definition .. 58

Table 56 – GetCertificateGroups Method AddressSpace Definition 59

Table 57 – GetCertificates Method AddressSpace Definition ... 60

Table 58 – GetTrustList Method AddressSpace Definition ... 60

Table 59 – GetCertificateStatus Method AddressSpace Definition ... 61

Table 60 – CheckRevocationStatus Method AddressSpace Definition 62

Table 61 – CertificateRequestedAuditEventType Definition ... 62

Table 62 – CertificateDeliveredAuditEventType Definition ... 63

Table 63 – ServerConfiguration Object Definition .. 65

Table 64 – ServerConfigurationType Definition ... 65

Table 65 – UpdateCertificate Method AddressSpace Definition ... 68

Table 66 – GetCertificates Method AddressSpace Definition ... 68

Table 67 – ApplyChanges Method AddressSpace Definition ... 69

Table 68 – CreateSigningRequest Method AddressSpace Definition 70

Table 69 – CancelChanges Method AddressSpace Definition ... 71

Table 70 – GetRejectedList Method AddressSpace Definition ... 71

Table 71 – ResetToServerDefaults Method AddressSpace Definition 72

Table 72 – ApplicationConfigurationType Definition .. 72

Table 73 – ApplicationConfigurationFolderType Definition .. 72

Table 74 – ManagedApplications Object Definition.. 73

Table 75 – TransactionDiagnosticsType Definition .. 73

Table 76 – TransactionErrorType Structure ... 74

Table 77 – TransactionErrorType Definition .. 74

Table 78 – CertificateUpdateRequestedAuditEventType Definition .. 74

Table 79 – CertificateUpdatedAuditEventType Definition .. 75

Table 80 – Well-known Roles for a KeyCredentialService ... 75

Table 81 – Well-known Roles for Server managed by a KeyCredentialService 76

Table 82 – Privileges for a KeyCredentialService .. 76

Table 83 – KeyCredentialManagementFolderType Definition .. 78

Table 84 – KeyCredentialManagement Object Definition ... 78

Table 85 – KeyCredentialServiceType Definition ... 78

OPC 10000-12: Discovery, Global Services ix 1.05.04

Table 86 – StartRequest Method AddressSpace Definition .. 80

Table 87 – FinishRequest Method AddressSpace Definition .. 81

Table 88 – Revoke Method AddressSpace Definition .. 81

Table 89 – KeyCredentialAuditEventType Definition ... 82

Table 90 – KeyCredentialRequestedAuditEventType Definition ... 82

Table 91 – KeyCredentialDeliveredAuditEventType Definition ... 82

Table 92 – KeyCredentialRevokedAuditEventType Definition .. 83

Table 93 – KeyCredentialConfigurationFolderType Definition .. 83

Table 94 – CreateCredential Method AddressSpace Definition.. 84

Table 95 – KeyCredentialConfiguration Object Definition .. 84

Table 96 – KeyCredentialConfigurationType Definition.. 85

Table 97 – GetEncryptingKey Method AddressSpace Definition .. 86

Table 98 – UpdateCredential Method AddressSpace Definition ... 87

Table 99 – DeleteCredential Method AddressSpace Definition .. 87

Table 100 – KeyCredentialUpdatedAuditEventType Definition... 87

Table 101 – KeyCredentialDeletedAuditEventType Definition .. 88

Table 102 – Well-known Roles for an AuthorizationService ... 89

Table 103 – Privileges for an AuthorizationService ... 89

Table 104 – AuthorizationServicesFolderType Definition ... 92

Table 105 – AuthorizationServices Object Definition ... 92

Table 106 – AuthorizationServiceType Definition .. 92

Table 107 – RequestAccessToken Method AddressSpace Definition 94

Table 108 – GetServiceDescription Method AddressSpace Definition 94

Table 109 – AccessTokenIssuedAuditEventType Definition .. 95

Table 110 – AuthorizationServicesFolderType Definition ... 95

Table 111 – AuthorizationServices Object Definition ... 96

Table 112 – AuthorizationServiceConfigurationType Definition ... 96

Table 113 – NamespaceMetadata Object for this Document ... 97

Table 114 – Namespaces used in this document ... 97

Table 115 – Allowed mDNS Service Names .. 102

Table 116 – DNS TXT Record String Format ... 102

Table 117 – DiscoveryUrl to DNS SRV and TXT Record Mapping 103

Table 118 – Examples of CapabilityIdentifiers ... 104

Table 119 – UDDI tModels .. 106

Table 120 – LDAP Object Class Schema .. 107

Table 121 – Application Certificate Store Directory Layout .. 108

Table 122 – Verifying that a Server is allowed to Provide Certificates 112

Table 123 – Verifying that a Client is allowed to request Certificates 112

OPC 10000-12: Discovery, Global Services x 1.05.04

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis
and design process to develop a standard interface to facilitate the development of applications by multiple vendors that
shall inter-operate seamlessly together.

Copyright © 2006-2024, OPC Foundation, Inc.

UAGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means–graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems –without permission of
the copyright owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies
must be obtained on an individual basis, directly from the OPC Foundation Web site
http://www.opcfoundation.org.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may
be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that
are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH
REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF
PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202 -3(a); (b) subparagraph (c)(1)(i) of the Rights
in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software
Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the
OPC Foundation, 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830.

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these
materials. Products developed using this specification may claim compliance or conformance with this specification if and
only if the software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not
meet these requirements may claim only that the product was based on this specification and must not claim compliance
or conformance with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

OPC 10000-12: Discovery, Global Services xi 1.05.04

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
http://www.opcfoundation.org/errata.

http://www.opcfoundation.org/errata

OPC 10000-12: Discovery, Global Services xii 1.05.04

Revision 1.05.04 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis ID Scope Summary Resolution

7928 Feature No way to get the certificate of a registered
application that has a signed certificate from
the GDS.

Added explaination on how to handle
errors in 7.9.5.

8063 Clarification Client connection management with GDS. Clarification of client connection
behaviour for use of global services in
6.3.

8685 Errata UpdateApplication allows to change the
ApplicationUri.

No longer allow updates to the
ApplicationUri in 6.6.7.

8957 Errata Explain chicken and egg problem when a
Client connects to an unknown GDS.

Add requirements to prevent securit
holes in 7.3.

9014 Clarification Requirements for setting ApplicationType
CLIENTANDSERVER.

Added detailed requirements to 7.9.3.

.9048 Clarification CertificateManagerEndpoint term not defined. Changed text to “All associations with
CertificateManagers are deleted” in
7.10.11.

9059 Clarification The mDNS section needs more explaination
(both Facet/CU and Part 12).

Updated wording in 4.2.3.

9195 Clarification Define more details about recommended
behaviour for Application Setup state and
TOFU.

Add rules for SecurityAdmin
configuration to G.2.

9247 Clarification Definition of “normal integrity checks” for the
ServerConfiguration UpdateCertificate
method.

Added explicit reference to Part 4 in
7.10.5.

9383 Clarification Missing closing of a secure channel after
TrustList update.

Added SecureChannel to the list of
actions taken in 7.8.2.3.

9440 Clarification CredentialSecret format for
UserName/Password is not clear.

Explicitly state that the credentialId is
a user name in 8.5.6.

9497 Errata Clients without RCP cannot register. Removed requirement for RCP support
in 6.6.5.

9506 Clarification Clarifications and fixes for ApplyChanges. Updated codes for ApplyChanges.

9507 Clarification No transaction related results for
CreateSigningRequest and TrustList.

Updated codes for
CreateSigningRequest,
UpdateCertificate and TrustList::Open

Updated codes for all methods that
requires signing/encryption.

9510 Feature Need to define ServerCapabilities for
REGISTRAR (Pull) and DCS waiting for
Config (Push).

Added REGISTRAR and DCA to
ServerCapabilities in Annex D.

9512 Feature Make ApplicationConfigurationType defined in
Part 21 available in Part 12.

Added 7.10.12.

9526 Clarification Clarification for configuration transaction
support.

Added 7.10.2 and
SupportsTransactions Property in
7.10.4.

9566 Clarification Invalid links to references. Updated links to reference documents
in 2.

9830 Clarification 0009830: Inconsistency between figures for
push order.

Updated Figure 15.

9856 Clarification Exceeding the MaxTrustListSize Limit when
modifying a TrustList

Added new error code to
CloseAndUpdate in 7.8.2.3

9854 Clarification No TrustList validation for
RemoveCertificate()

Added new error code to
RemoveCertificate in 7.8.2.5.

9853 Clarification State whether TrustLists can be opened
multiple times (concurrently) for reading or
not

Deleted the Bad_InvalidState code
from the OpenWithMasks Method in
7.8.2.2.

https://www.opcfoundation.org/mantis/view.php?id=7928
https://www.opcfoundation.org/mantis/view.php?id=8063
https://www.opcfoundation.org/mantis/view.php?id=8685
https://www.opcfoundation.org/mantis/view.php?id=8957
https://www.opcfoundation.org/mantis/view.php?id=9014
https://www.opcfoundation.org/mantis/view.php?id=9048
https://www.opcfoundation.org/mantis/view.php?id=9059
https://www.opcfoundation.org/mantis/view.php?id=9195
https://www.opcfoundation.org/mantis/view.php?id=9247
https://www.opcfoundation.org/mantis/view.php?id=9383
https://www.opcfoundation.org/mantis/view.php?id=9440
https://www.opcfoundation.org/mantis/view.php?id=9497
https://www.opcfoundation.org/mantis/view.php?id=9506
https://www.opcfoundation.org/mantis/view.php?id=9507
https://www.opcfoundation.org/mantis/view.php?id=9510
https://www.opcfoundation.org/mantis/view.php?id=9512
https://www.opcfoundation.org/mantis/view.php?id=9526
https://www.opcfoundation.org/mantis/view.php?id=9566
https://www.opcfoundation.org/mantis/view.php?id=9830
https://www.opcfoundation.org/mantis/view.php?id=9856
https://www.opcfoundation.org/mantis/view.php?id=9854
https://www.opcfoundation.org/mantis/view.php?id=9853

OPC 10000-12: Discovery, Global Services xiii 1.05.04

Mantis ID Scope Summary Resolution

9852 Clarification Potential deadlock situation when
manipulating TrustLists via File-API

Added a requirement to report an error
if a transaction on another session
exists when CloseAndUpdate is called
in 7.8.2.3.

.

https://www.opcfoundation.org/mantis/view.php?id=9852

1.05.04 1 OPC 10000-12: Discovery, Global Services

OPC UNIFIED ARCHITECTURE

Part 12: Discovery and Global Services

1 Scope

This part specifies how OPC Unified Architecture (OPC UA) Clients and Servers interact with
DiscoveryServers when used in different scenarios. It specifies the requirements for the
LocalDiscoveryServer, LocalDiscoveryServer-ME and GlobalDiscoveryServer. It also defines
information models for Certificate management, KeyCredential management and
AuthorizationServices.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments
and errata) applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model

http://www.opcfoundation.org/UA/Part2/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and Conditions

http://www.opcfoundation.org/UA/Part9/

OPC 10000-14, OPC Unified Architecture - Part 14: PubSub

http://www.opcfoundation.org/UA/Part14/

OPC 10000-17, OPC Unified Architecture – Part 17: Alias Names

http://www.opcfoundation.org/UA/Part17/

OPC 10000-20, OPC Unified Architecture – Part 20: File Transfer

http://www.opcfoundation.org/UA/Part20/

OPC 10000-21, OPC Unified Architecture – Part 21: Device Onboarding

http://www.opcfoundation.org/UA/Part21/

OPC 10000-100, OPC UA Specification: Part 100 - Devices

http://www.opcfoundation.org/UA/Part100/

Auto-IP, Dynamic Configuration of IPv4 Link-Local Addresses

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part2/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part9/
http://www.opcfoundation.org/UA/Part14/
http://www.opcfoundation.org/UA/Part17/
http://www.opcfoundation.org/UA/Part20/
http://www.opcfoundation.org/UA/Part21/
http://www.opcfoundation.org/UA/Part100/

OPC 10000-12: Discovery, Global Services 2 1.05.04

https://www.rfc-editor.org/rfc/rfc3927

DNS-Name, Domain Names – Implementation and Specification

https://www.rfc-editor.org/rfc/rfc1035

DHCP, Dynamic Host Configuration Protocol

https://www.rfc-editor.org/rfc/rfc2131

mDNS, Multicast DNS

https://www.rfc-editor.org/rfc/rfc6762

DNS-SD, DNS Based Service Discovery

https://www.rfc-editor.org/rfc/rfc6763

RFC 5958, Asymmetric Key Packages

https://www.rfc-editor.org/rfc/rfc5958

PKCS #10, Certification Request Syntax Specification

https://www.rfc-editor.org/rfc/rfc2986

PKCS #12, Personal Information Exchange Syntax v1.1

https://www.rfc-editor.org/rfc/rfc7292

RFC 7030, Enrollment over Secure Transport

https://www.rfc-editor.org/rfc/rfc7030

DI, OPC Unified Architecture for Devices (DI)

https://opcfoundation.org/documents/10000-100/

ADI, OPC Unified Architecture for Analyzer Devices (ADI)

https://opcfoundation.org/documents/10020/

PLCopen, OPC Unified Architecture / PLCopen Information Model

https://opcfoundation.org/documents/30000/

FDI, OPC Unified Architecture for FDI

https://opcfoundation.org/documents/30080/

ISA-95, ISA-95 Common Object Model

https://opcfoundation.org/documents/10030/

X.500, ISO/IEC 9594-1:2017 – The Directory Part 2: Overview of concepts

https://www.iso.org/standard/72550.html

IEEE 802.1AR, IEEE Std 802.1AR-2018 – Secure Device Identity

https://standards.ieee.org/standard/802_1AR-2018.html

3 Terms, definitions, and conventions

3.1 Terms and definitions

For the purposes of this document the following terms and definitions as well as the terms and
definitions given in OPC 10000-1, OPC 10000-2, OPC 10000-3, OPC 10000-4, OPC 10000-6
and OPC 10000-9 apply.

3.1.1
CertificateManager
a software application that manages the Certificates used by Applications in an administrative
domain.

3.1.2
CertificateGroup
a context used to manage the TrustList and Certificate(s) associated with Applications or Users.

https://www.rfc-editor.org/rfc/rfc3927
https://www.rfc-editor.org/rfc/rfc1035
https://www.rfc-editor.org/rfc/rfc2131
https://www.rfc-editor.org/rfc/rfc6762
https://www.rfc-editor.org/rfc/rfc6763
https://www.rfc-editor.org/rfc/rfc5958
https://www.rfc-editor.org/rfc/rfc2986
https://www.rfc-editor.org/rfc/rfc7292
https://www.rfc-editor.org/rfc/rfc7030
https://opcfoundation.org/documents/10000-100/
https://opcfoundation.org/documents/10020/
https://opcfoundation.org/documents/30000/
https://opcfoundation.org/documents/30080/
https://opcfoundation.org/documents/10030/
https://www.iso.org/standard/72550.html
https://standards.ieee.org/standard/802_1AR-2018.html

1.05.04 3 OPC 10000-12: Discovery, Global Services

3.1.3
CertificateRequest
a PKCS #10 encoded structure used to request a new Certificate from a Certificate Authority.

Note 1 to entry: Devices have hardware-based mechanisms, such as a TPM, to protect Private Keys.

3.1.4
ClientUrl
a physical address available on a network that allows Servers to initiate a reverse connection.

3.1.5
DirectoryService

a software application, or a set of applications, that stores and organizes information about
resources such as computers or services.

3.1.6
DiscoveryServer
an Application that maintains a list of OPC UA Applications that are available on the network
and provides mechanisms for other OPC UA Applications to obtain this list.

3.1.7
DiscoveryUrl
a URL for a network Endpoint that provides the information required to connect to a Client or
Server.

3.1.8
GlobalDiscoveryServer (GDS)

a Server that provides numerous services related to discovery and security management.

Note 1 to entry: a GDS may also be a CertificateManager.

Note 2 to entry: a GDS may also be a KeyCredentialService.

Note 3 to entry: a GDS may also be a AuthorizationService.

3.1.9
GlobalService

a Server that provides centrally managed capabilities needed for a system.

Note 4 to entry: a GlobalDiscoveryServer, a CertificateManager, a KeyCredentialService and an AuthorizationService
are all examples of GlobalServices.

3.1.10
IPAddress

a unique number assigned to a network interface that allows Internet Protocol (IP) requests to
be routed to that interface.

Note 1 to entry: An IPAddress for a host may change over time.

3.1.11
KeyCredential

a unique identifier and a secret used to access an AuthorizationService or a Broker.

Note 1 to entry: a user name and password is an example of a KeyCredential.

3.1.12
KeyCredentialService
a software application that provides KeyCredentials needed to access an AuthorizationService
or a Broker.

3.1.13
LocalDiscoveryServer (LDS)

a DiscoveryServer that maintains a list of all Servers that have registered with it.

Note 1 to entry: Servers normally register with the LDS on the same host.

OPC 10000-12: Discovery, Global Services 4 1.05.04

3.1.14
LocalDiscoveryServer-ME (LDS-ME)
a LocalDiscoveryServer that includes the MulticastExtension.

3.1.15
MulticastExtension
an extension to a LocalDiscoveryServer that adds support for the mDNS protocol.

3.1.16
MulticastSubnet

a network that allows multicast packets to be sent to all nodes connected to the network.

Note 1 to entry: a MulticastSubnet is not necessarily the same as a TCP/IP subnet.

3.1.17
Privilege

a named set of rights which cannot be expressed as Permissions granted on Nodes.

Note 1 to entry: For example, a Privilege can be defined when the right to call a Method depends on the parameters
passed to the Method.

Note 5 to entry: a Privilege is a document convention that does not appear in the Server AddressSpace.

3.1.18
PullManagement

a workflow where a Client manages its configuration by using a GlobalService.

3.1.19
PushManagement

a workflow where a GlobalService manages a Server’s configuration.

3.1.20
ServerCapabilityIdentifier

a short identifier which uniquely identifies a set of discoverable capabilities supported by a n
OPC UA Application.

Note 1 to entry: the list of the currently defined CapabilityIdentifiers is in Annex D.

1.05.04 5 OPC 10000-12: Discovery, Global Services

3.2 Abbreviations and symbols

API Application Programming Interface
CA Certificate Authority
CRL Certificate Revocation List
CSR Certificate Signing Request
DER Distinguished Encoding Rules
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
EST Enrolment over Secure Transport
GDS Global Discovery Server
HTTP Hypertext Transfer Protocol
IANA The Internet Assigned Numbers Authority
JWT JSON Web Token
LDAP Lightweight Directory Access Protocol
LDS Local Discovery Server
LDS-ME Local Discovery Server with the Multicast Extension
mDNS Multicast Domain Name System
MQTT Message Queuing Telemetry Transport
NAT Network Address Translation
OCSP Online Certificate Status Protocol
PEM Privacy Enhanced Mail
PFX Personal Information Exchange
PKCS Public Key Cryptography Standards
RSA Rivest–Shamir–Adleman
SHA1 Secure Hash Algorithm
SSL Secure Socket Layer
TLS Transport Layer Security
TPM Trusted Platform Module
UA Unified Architecture
UDDI Universal Description, Discovery and Integration

OPC 10000-12: Discovery, Global Services 6 1.05.04

4 The Discovery Process

4.1 Overview

The discovery process allows applications to find other applications on the network and then
discover how to connect to them. Note that this discussion builds on the discovery related
concepts defined in OPC 10000-4. Discoverable applications are generally Servers, however,
some Clients will support reverse connections as described in OPC 10000-6 and want Servers
to be able to discover them.

Clients and Servers can be on the same host, on different hosts in the same subnet, or even
on completely different locations in an administrative domain. The following clauses describe
the different configurations and how discovery can be accomplished.

The mechanisms for Clients to discover Servers are specified in 4.3.

The mechanisms for Servers to make themselves discoverable are specified in 4.2.

The Discovery Services are specified in OPC 10000-4. They are implemented by individual
Servers and by dedicated DiscoveryServers. The following dedicated DiscoveryServers provide
a way for applications to discover registered OPC UA applications in different situations:

• A LocalDiscoveryServer (LDS) maintains discovery information for all applications that
have registered with it, usually all applications available on the host that it runs on.

• A LocalDiscoveryServer with the MulticastExtension (LDS-ME) maintains discovery
information for all applications that have been announced on the local MulticastSubnet.

• A GlobalDiscoveryServer (GDS) maintains discovery information for applications
available in an administrative domain.

LDS and LDS-ME are specified in Clause 5. The GDS is specified in Clause 6.

4.2 Registration and Announcement of Applications

4.2.1 Overview

The clause describes how an application registers itself so it can be discovered. Most
Applications will want other applications to discover them. Applications that do not wish to be
discovered openly should not register with a DiscoveryServer. In this case such Applications
should only publish a DiscoveryUrl via some out-of-band mechanism to be discovered by
specific Applications.

4.2.2 Hosts with a LocalDiscoveryServer

Applications register themselves with the LDS on the same host if they wish to be discovered.
The registration ensures that the applications are visible for local discovery (see 4.3.3) and
MulticastSubnet discovery if the LDS is a LDS-ME (see 4.3.4).

The OPC UA Standard (OPC 10000-4) defines a RegisterServer2 Service which provides
additional registration information. All Applications and LocalDiscoveryServer shall support the
RegisterServer2 Service and, for backwards compatibility, the older RegisterServer Service. If
an Application encounters an older LDS that returns a Bad_ServiceUnsupported error when
calling RegisterServer2 Service it shall try again with RegisterServer Service.

The RegisterServer2 Service allows the Application to specify zero or more ServerCapability
Identifiers. CapabilityIdentifiers are short, string identifiers of well-known OPC UA features.
Applications can use these identifiers as a filter during discovery.

The set of known CapabilityIdentifiers is specified in Annex D and is limited to features which
are considered to be important enough to report before an application makes a connection. For
example, support for the GDS information model or the Alarms information model are Server
capabilities that have a ServerCapabilityIdentifier defined.

1.05.04 7 OPC 10000-12: Discovery, Global Services

Before an application registers with the LDS it should call the GetEndpoints Service and choose
the most secure endpoint supported by the LDS and then call RegisterServer2 or
RegisterServer.

Registration with LDS or LDS-ME is illustrated in Figure 1.

Start

RegisterServer2
succeeded?

Call RegisterServer2
with IsOnline=True

on Local LDS

Call RegisterServer
with IsOnline=True

on Local LDS

No

Wait For Re-
Registration

Timer to Expire
Yes

No
Server

Shutdown?
Yes

End

Call RegisterServer2
or RegisterServer

with IsOnline=False

Figure 1 – The Registration Process with an LDS

See OPC 10000-4 for more information on the re-registration timer and the IsOnline flag.

4.2.3 Hosts without a LocalDiscoveryServer

Dedicated systems (usually embedded systems) with exactly one Server installed may not have
a separate LDS. Such Servers shall become their own LDS or LDS-ME by implementing
FindServers and GetEndpoints Services at the well-known address for an LDS. If implementing
an LDS-ME, they should also announce themselves on the MulticastSubnet with a basic
MulticastExtension. This requires a small subset of an mDNS Responder (see mDNS and
Annex C) that announces the Server and responds to mDNS probes. In addition they shall
implement additional OPC UA specific items described in Annex C. The Server may not provide
the caching and address resolution implemented by a full mDNS Responder.

4.3 The Discovery Process for Clients to Find Servers

4.3.1 Overview

The discovery process allows Clients to find Servers on the network and then discover how to
connect to them. Once a Client has this information it can save it and use it to connect directly
to the Server again without going through the discovery process. Clients that cannot connect
with the saved connection information should assume the Server configuration has changed
and therefore repeat the discovery process.

A Client has several choices for finding Servers:

• Out-of-band discovery (i.e. entry into a GUI) of a DiscoveryUrl for a Server;

• Calling FindServers on the LDS installed on the Client host;

• Calling FindServers on a remote LDS, where the HostName for the remote host is
manually entered;

• Calling FindServersOnNetwork (see OPC 10000-4) on the LDS-ME installed on Client
host;

• Supporting the LDS-ME functionality locally in the Client.

• Searching for Servers known to a GlobalDiscoveryServer.

OPC 10000-12: Discovery, Global Services 8 1.05.04

The DiscoveryUrl provides all of the information a Client needs to connect to a
DiscoveryEndpoint (see 4.3.2).

Clients should be aware of rogue DiscoveryServers that might direct them to rogue Servers.
That said, this problem is mitigated when a Client connects to a Server and verifies that it trusts
the Server. In addition, the CreateSession Service returns parameters that allow Client to verify
that the previously acquired results from a LDS have not been altered. See OPC 10000-2 and
OPC 10000-4 for a detailed discussion of these issues.

A similar potential for a rogue GDS exists if the Client has not been configured to trust the GDS
Certificate or if the Client does not use security when connecting to the GDS. Note that a Client
that uses security but automatically trusts a GDS Certificate is not protected from a rogue GDS
even though the connection itself is secure. This problem is also mitigated by verifying trust
whenever a Client connects to a Server discovered via the GDS.

4.3.2 Simple Discovery with a DiscoveryUrl

Every Server has one or more DiscoveryUrls that allow access to its Endpoints. Once a Client
obtains (e.g. via manual entry into a form) the DiscoveryUrl for the Server, it reads the
EndpointDescriptions using the GetEndpoints Service defined in OPC 10000-4.

The discovery process for this scenario is illustrated in Figure 2.

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Figure 2 – The Simple Discovery Process

4.3.3 Local Discovery

In many cases Clients do not know which Servers exist but possibly know which hosts might
have Servers on them. In this situation the Client will look for the LocalDiscoveryServer on a
host by constructing a DiscoveryUrl using the well-known addresses defined in OPC 10000-6.

If a Client finds a LocalDiscoveryServer then it will call the FindServers Service on the LDS to
obtain a list of Servers and their DiscoveryUrls. The Client would then call the GetEndpoints
service for one of the Servers returned. The discovery process for this scenario is illustrated in
Figure 3.

1.05.04 9 OPC 10000-12: Discovery, Global Services

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Local

Discovery Server

FindServers()

ApplicationDescription[]

Figure 3 – The Local Discovery Process

4.3.4 MulticastSubnet Discovery

In some situations Clients will not know which hosts have Servers. In these situations the Client
will look for a LocalDiscoveryServer with the MulticastExtension on its local host and requests
a list of DiscoveryUrls for Servers and DiscoveryServers available on the MulticastSubnet.

The discovery process for this scenario is illustrated in Figure 4.

Client
Local

DiscoveryServer

FindServersOnNetwork

DiscoveryUrls[]

Local

DiscoveryServer

Multicast Probe

Multicast Announce

Lookup Cache

GetEndpoints()

CreateSecureChannel()

Server

EndpointDescription[]

Discovery

Endpoint
Session

Endpoint

RegisterServer2

or RegisterServer

Figure 4 – The MulticastSubnet Discovery Process

In this scenario the Server uses the RegisterServer2 Service to tell a LocalDiscoveryServer to
announce the Server on the MulticastSubnet. The Client will receive the DiscoveryUrl and
CapabilityIdentifiers for the Server when it calls FindServersOnNetwork and then connects
directly to the Server. When a Client calls FindServers it only receives the Servers running on
the same host as the LDS.

Clients running on embedded systems may not have a LDS-ME available on the system, These
Clients can support an mDNS Responder which understands how OPC UA concepts are
mapped to mDNS messages and maintains the same table of servers as maintained by the
LDS-ME. This mapping is described in Annex C.

4.3.5 Global Discovery

A GDS is an OPC UA Server which allows Clients to search for Servers within the administrative
domain of the GDS. It provides Methods that allow applications to search for other applications
(see 6). To access the GDS, the Client uses the Call service to invoke the QueryApplications
Method (see 6.6.11) to retrieve a list of Servers that meet the filter criteria provided. The

OPC 10000-12: Discovery, Global Services 10 1.05.04

QueryApplications Method is similar to the FindServers service except that it provides more
advanced search and filter criteria. The discovery process is illustrated in Figure 5.

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Global

Discovery Server

Call() (QueryApplications)

ApplicationDescription[]

Figure 5 – The Global Discovery Process

The GDS may be coupled with any of the previous network architectures. For each
MulticastSubnet, one or more LDSs may be registered with a GDS.

The Client can also be configured with the URL of the GDS using an out of band mechanism.

The complete discovery process is shown in Figure 6.

4.3.6 Combined Discovery Process for Clients

The use cases in the preceding clauses imply a number of choices that should be made by
Clients when a Client needs to connect to a Server. These choices are combined together in
Figure 6.

Start
Have a

Server URL?
Have a

HostName?
No

Have a GDS
URL?

No
Call FindServers

OnNetwork
on LDS

No

No Error
and

URL Found?

Is GDS URL?

Is LDS URL?

Yes

No

Call Query
Applications on

GDS

Yes

Yes

Can Find
HostName

Out of Band?
No

Yes

Can Find URL
Out of Band?

No

Yes

Call FindServers
on LDS

Yes

Yes

Call
GetEndpoints

on Server

Yes

Connected

No, it is a Server

Construct URL
from HostName

Failed

No

Figure 6 – The Discovery Process for Clients

FindServersOnNetwork can be called on the local LDS, however, it can also be called on a
remote LDS which is part of a different MulticastSubnet.

1.05.04 11 OPC 10000-12: Discovery, Global Services

An out-of-band mechanism is a way to find a URL or a HostName that is not described by this
standard. For example, a user could manually enter a URL or use system specific APIs to
browse the network neighbourhood.

A Client that goes through the discovery process can save the URL that was discovered. If the
Client restarts later it can use that URL and bypass the discovery process. If reconnection fails
the Client will have to go through the process again.

4.4 The Discovery Process for Reverse Connections

4.4.1 Overview

The discovery process for reverse connect does not serve the same purpose as the discovery
process for normal connections because reverse connections require the Server to be
configured to automatically attempt to connect to the Client and the Client to be configured so
it knows what to do with the Server when it receives the connection. The limited mechanisms
discussed here may help SecurityAdmins with the configuration of Servers.

A SecurityAdmin tasked with configuring Servers needs to determine the ClientUrls for Clients
that support reverse connect.

The following choices are available:

• Out-of-band discovery (i.e. entry into a GUI) of a ClientUrl for a Client;

• Searching for Clients known to a GlobalDiscoveryServer.

The mechanisms based on an LDS are not available since Clients do not register with the LDS.

4.4.2 Out-of-band Discovery

Every Client that supports reverse connect has one or more ClientUrls that allow Servers to
connect. Once the SecurityAdmin acquires the ClientUrl via an out-of-band mechanism, it can
configure the Server to use it.

4.4.3 Global Discovery for Reverse Connections

A GDS is a Server which allows other SecurityAdmins to search for Clients that support reverse
connnect within the administrative domain of the GDS. The SecurityAdmin uses the Call service
to invoke the QueryApplications Method (see 6.6.11) with “RCP” as a serverCapabilityFilter to
get a list of Clients that support reverse connect from the GDS.

The discovery process is illustrated in Figure 5.

ReverseHello

Server Client

CreateSecureChannel

Global

Discovery Server

QueryApplications

(with RCP filter)

ApplicationDescription[]

(with rcp+ prefix)

Figure 7 – The Global Discovery Process for Reverse Connections

The ClientUrls are returned in the DiscoveryUrls parameter of the ApplicationDescription record
and have the ‘rcp+’ prefix. DiscoveryUrls without the prefix are used for forward connections.
Once the SecurityAdmin has a ClientUrl it can configure the Server to use it.

OPC 10000-12: Discovery, Global Services 12 1.05.04

5 Local Discovery Server

5.1 Overview

Each host that could have multiple discoverable applications installed should have a standalone
LocalDiscoveryServer installed. The LocalDiscoveryServer shall expose one or more Endpoints
which support the FindServers and GetEndpoints services defined in OPC 10000-4. In addition,
the LocalDiscoveryServer shall provide at least one Endpoint which implements the
RegisterServer service for these applications.

The FindServers Service returns the information for the LocalDiscoveryServer and all Servers
that are known to the LDS.The GetEndpoints Service returns the EndpointDescriptions for the
LocalDiscoveryServer that allow Servers to call the RegisterServer or RegisterServer2 Services.
The LocalDiscoveryServer does not support Sessions so information needed for establishing
Sessions, such as supported UserTokenPolicies, is not provided.

In systems (usually embedded systems) with exactly one Server installed this Server may also
be the LDS (see 4.2.3).

An LDS-ME will announce all applications that it knows about on the local MulticastSubnet. In
order to support this, a LocalDiscoveryServer supports the RegisterServer2 Service defined in
OPC 10000-4. For backward compatibility a LocalDiscoveryServer also supports the
RegisterServer Service which is defined in OPC 10000-4.

Each host with OPC UA Applications (Clients and Servers) installed should have a
LocalDiscoveryServer with a MulticastExtension.

The MulticastExtension incorporates the functionality of the mDNS Responder described in the
Multicast DNS (mDNS) specification (see mDNS). In addition the LocalDiscoveryServer that
supports the MulticastExtension supports the FindServersOnNetwork Service described in OPC
10000-4.

5.2 Security Considerations for Multicast DNS

The Multicast DNS (mDNS) specification is used for various commercial and consumer
applications. This provides a benefit in that implementations exist, however, system
administrators could choose to disable Multicast DNS operations. For this reason, Applications
shall not rely on Multicast DNS capabilities.

Multicast DNS operations are insecure because of their nature; therefore they should be
disabled in environments where an attacker could cause problems by impersonating another
host. This risk is minimized if OPC UA security is enabled and all Applications use Certificate
TrustLists to control access.

5.3 Network Architectures

5.3.1 Overview

The discovery mechanisms defined in this standard are expected to be used in many different
network architectures. The following three architectures are Illustrated:

• Single MulticastSubnet;

• Multiple MulticastSubnets;

• No MulticastSubnet (or multiple MulticastSubnets with exactly one host each);

A MulticastSubnet is a network segment where all hosts on the segment can receive multicast
packets from the other hosts on the segment. A physical LAN segment is typically a
MulticastSubnet unless the administrator has specifically disabled multicast communication. In
some cases multiple physical LAN segments can be connected as a single MulticastSubnet.

5.3.2 Single MulticastSubnet

The Single MulticastSubnet Architecture is shown in Figure 8.

1.05.04 13 OPC 10000-12: Discovery, Global Services

mDNS

LDS-
ME

Client A
(rcp+)

ServerB

Register
LDS-
ME

Server
C

Register

LDS-
ME

Client

Server
D

Register
FindServers: D
FindServersOnNetwork: A, B, C, D

FindServers: C
FindServersOnNetwork: A, B, C, D

Client

rcp+: supports reverse connect

Figure 8 – The Single MulticastSubnet Architecture

In this architecture every host has an LDS-ME and uses mDNS to maintain a cache of the
applications on the MulticastSubnet. A Client can call FindServersOnNetwork on any LDS-ME
and receive the same set of applications. When a Client calls FindServers it only receives the
applications running on the same host as the LDS.

5.3.3 Multiple MulticastSubnet

The Multiple MulticastSubnet Architecture is shown in Figure 9.

mDNS

LDS-
ME

Client A
(rcp+)

ServerB

Register

LDS-ME
Server

C
Register

LDS-
ME

Client

Server
D

Register

FindServers: D
FindServersOnNetwork: A, B, D

FindServers: C
FindServersOnNetwork: C

mDNS

LDS-
ME

Client

rcp+: supports reverse connect

Figure 9 – The Multiple MulticastSubnet Architecture

This architecture is the same as the previous architecture except in this architecture the mDNS
messages do not pass through routers connecting the MulticastSubnets. This means that a

OPC 10000-12: Discovery, Global Services 14 1.05.04

Client calling FindServersOnNetwork will only receive a list of applications running on the
MulticastSubnets that the LDS-ME is connected to.

A Client that wants to connect to a remote MulticastSubnet shall use out of band discovery (i.e.
manual entry) of a HostName or DiscoveryUrl. Once a Client finds an LDS-ME on a remote
MulticastSubnet it can use FindServersOnNetwork to discover all applications on that
MulticastSubnet.

5.3.4 No MulticastSubnet

The No MulticastSubnet Architecture is shown in Figure 10.

LDS-
ME

A

B

Register
LDS-
ME

CRegister

LDS-
ME

Client

D

Register
FindServers: D
FindServersOnNetwork: D

FindServers: C
FindServersOnNetwork: C

FindServers: A, B
FindServersOnNetwork: A, B

Figure 10 – The No MulticastSubnet Architecture

In this architecture the mDNS is not used at all because the Administrator has disabled multicast
at a network level or by turning off multicast capabilities of each LDS-ME.

A Client that wants to discover applications needs to use an out of band mechanism to find the
HostName and call FindServers on the LDS of that host. FindServersOnNetwork may also work
but it will never return more than what FindServers returns. Clients could also use a GDS if one
is available.

5.3.5 Domain Names and MulticastSubnets

The mDNS specification requires that fully qualified domain name be announced on the network.
If a Server is not configured with a fully qualified domain name then mDNS requires that the
‘local’ top level domain be appended to the domain names. The ‘local’ top level domain indicates
that the domain can only be considered to be unique within the subnet where the domain name
was used. This means Clients need to be aware that URLs received from any LDS-ME other
than the one on the Client’s computer could contain ‘local’ domains which are not reachable or
will connect to a different computer with the same domain name that happens to be on the same
subnet as the Client. It is recommended that Clients ignore all URLs with the ‘local’ top level
domain unless they are returned from the LDS-ME running on the same computer.

System administrators can eliminate this problem by configuring a normal DNS with the fully
qualified domain names for all computers which need to be accessed by Clients outside the
MulticastSubnet.

Servers configured with fully qualified domain names should specify the fully qualified domain
name in its ApplicationInstance Certificate. Servers shall not append the ‘local’ top level domain
to any domains declared in their Certificate; an unqualified domain name is used if a more
appropriate qualifer does not exist. Clients using a URL returned from an LDS-ME shall ignore
the ‘local’ top level domain when checking the domain against the Server Certificate.

1.05.04 15 OPC 10000-12: Discovery, Global Services

Note that domain name validation is a necessary but not sufficient check against rogue Servers
or man-in-the-middle attacks when Server Certificates do not contain fully qualified domain
names. The Certificate trust relationship established by administrators is the primary
mechanism used to protect against these risks.

6 Global Discovery Server

6.1 Overview

The LocalDiscoveryServer is useful for networks where the host names can be discovered.
However, this is typically not the case in large systems with multiple servers on multiple subnets.
For this reason there is a need for an enterprise wide DiscoveryServer called a
GlobalDiscoveryServer.

The GlobalDiscoveryServer (GDS) is an OPC UA Server which allows Clients to search for
Servers within the administrative domain. When compared to the LDS, the GDS provides an
authorative source for Servers which have been verified by administrators and accessed via a
secure communication channel.

The GDS provides Methods that allow administrators to register applications and allow
applications to search for other applications.

Some GDS implementations may provide a front-end to an existing DirectoryService such as
LDAP (see Annex E). By standardizing on an OPC UA based interface, Clients do not need to
have knowledge of different DirectoryServices.

6.2 Roles and Privileges

GlobalDiscoveryServers restrict access to many of the features they provide. These restrictions
are described either by referring to well-known Roles which a Session must have access to or
by referring to Privileges which are assigned to Sessions using mechanisms other than the well-
known Roles. The well-known Roles used in for a GDS are listed in Table 1.

Table 1 – Well-known Roles for a GDS

Name Description

DiscoveryAdmin This Role grants rights to register, update and unregister any OPC UA Application.

SecurityAdmin This Role grants the right to change the security configuration of a GDS.

The Privileges used in for a GDS are listed in Table 2.

Table 2 – Privileges for a GDS

Name Description

ApplicationSelfAdmin This Privilege grants an OPC UA Application the right to update its own registration.

The Certificate used to create the SecureChannel is used to determine the identity
of the OPC UA Application.

ApplicationAdmin This Privilege grants rights to update one or more registrations.

The Certificate used to create the SecureChannel is used to determine the identity
of the OPC UA Application and what the set of registrations it is authorized to
update.

6.3 Client connections to global services

A GlobalDiscoveryServer is an OPC UA Server implementing different global services for
discovery, Certificate management, user or PubSub key management, user authorization,
software and device management.

The number of OPC UA Applications using the different services as OPC UA Client may be
huge and the OPC UA Server is most likely not able to handle connections from all OPC UA
Clients at the same time. Therefore an OPC UA Client connected to a GDS should minimize the
time it is connected to the GDS to the currently required actions. The OPC UA Client shall

OPC 10000-12: Discovery, Global Services 16 1.05.04

disconnect as soon as it completes the sequence of actions needed to interact with the services.
The OPC UA Clients shall not keep connections open between the execution of sequences.

A GDS OPC UA Server is allowed to close Sessions with OPC UA Clients not authenticated as
one of the GDS administrative Roles if it runs out of connection resources. If the GDS needs to
close Sessions, it should first close Sessions without GDS management Privileges. Otherwise
it may close the Session that was inactive for the longest time not using GDS global services
e.g. Method calls.

It is also recommended to use a short maximum session timeout on the GDS OPC UA Server.

Actions performed cyclically by OPC UA Applications during PullManagement shall start the
second cycle with a random delay that is between one and at least ten percent of the cycle
period.

6.4 Local Discovery

If an administrator (e.g. a Client with access to the DirectoryAdmin Role) registers a
LocalDiscoveryServer with the GDS, then the GDS periodically adds Servers to a list for
review by calling FindServersOnNetwork or FindServers on the LDS. Figure 11 shows the
relationship between a GDS and the LDS-ME or LDS.

The GDS shall not make Servers discovered in this manner available via QueryApplications
for FindApplications before an administrator has approved the Server on a case by case basis
or via automated rules. Note that auto-population can result in conflicts where multiple
Servers have the same ApplicationUri due to a configuration error. A GDS should keep track
of these conflicts so an administrator can review and resolve them.

Global
DirectoryService

Local
DiscoveryServer

Server or
Client

Client

LDS w/
Multicast Extension

Multicast
Extension

Figure 11 – The Relationship Between GDS and other components

The steps shown in Figure 11 are:

1 The Server calls RegisterServer2 on the LDS running on the same computer.

2 The administrator registers LDS-ME installations with the GDS.

3 The GDS calls FindServersOnNetwork on the LDS-ME to find all applications on
the same MulticastSubnet.

4 The GDS creates a record for each application returned by the LDS-ME. These
records shall be approved before they are made available to Clients of the GDS.
This approval can be obtained from an DiscoveryAdmin.

1.05.04 17 OPC 10000-12: Discovery, Global Services

5 The Client calls QueryApplications Method on the GDS to discover applications.

The Information Model used for registration and discovery is shown in 6.6.1. Any Client shall
be able to call the QueryApplications Method to find applications known to GDS. The complete
definitions for each of the types used are described in 0.

Once a Server is registered with the GDS the record does not dissappear if the Server goes
offline. If a Server is permentently taken offline the administrator needs to manually remove the
registration.The interactions described above apply to Servers automatically discovered via an
LDS. Servers can also be discovered by another application and registered automatically with
the GDS provided the other application has the necessary administrative rights on the GDS.

6.5 Application Registration Workflow

The OPC UA Application or the Application configuration tool connects to the GDS for initial
installation with GDS including Application registration. This requires a user that has the
DiscoveryAdmin Role or the ApplicationAdmin Privilege.

The workflow for the Application registration is shown in Figure 12.

OPC 10000-12: Discovery, Global Services 18 1.05.04

CreateSecureChannel
CreateSession

ActivateSession

Start
Installation

Persist ApplicationId
Persist CertificateGroup(s)

RegisterApplication

FindApplications

0

No. of
Applications

Verify with
DiscoveryAdmin

 > 1

SignAndEncrypt Channel
 from Application to GDS

User that is allowed to add
 an application to GDS

[in] ApplicationUri

[out] ApplicationId

Registration
Completed

Application
Registration

No

Expected
Result

1

No

Yes

Verify with
DiscoveryAdmin

Continue
Headless

Set application Certificate
on GDS

Yes with PushManagement

Disconnect

Idle PUSH

Yes with PullManagement

Configure
PushManagement

Disconnect

[in] ApplicationRecord

Browse CertificateGroups

Select CertificateGroup(s)

No – use NULL CertificateGroupId

Succeeded

Yes

Get add credentials
from DiscoveryAdmin

No

More available than
default groups

Yes

GDS persistence:
ApplicationId NodeId
CertificateGroups NodeId[]

Figure 12 – Application Registration Workflow

The description of the Application registration workflow steps is provided in Table 3.

1.05.04 19 OPC 10000-12: Discovery, Global Services

Table 3 – Application Registration Workflow Steps

Step Description

Application installation The registration of an application with a GDS is normally executed as part of the initial
installation and configuration of the application.
It can be executed by a configuration tool that is part of the application or by a generic
GDS configuration tool.

Connect For the connection management with the GDS the services OpenSecureChannel,
CreateSession and ActivateSession are used to create a connection with
MessageSecurityMode SignAndEncrypt and a user that has the permission to register
applications with the GDS. If the user does not have sufficient rights, the GDS can
provide a mechanism to accept registrations on the GDS side before they are visible
to Clients through QueryApplications.

FindApplications The first step after connect is to check if there is already a registration available for
the ApplicationUri.
The DirectoryType Method FindApplications is used to pass the ApplicationUri of the
application to the GDS. The Method returns an array of application records where the
size of the array defines the next steps.

• If the array is empty, the next step is RegisterApplication.

• If the array size is one, and the record matches the expected application
record, the next step is Browse CertificateGroups.

• If the array size is one and the record does not match the expected
application record, the registration must be verified with a DiscoveryAdmin.

• If the array size is more than one, this indicates a fatal error and the status
must be verified with a DiscoveryAdmin.

RegisterApplication The DirectoryType Method RegisterApplication is used to pass in an application record
with the application information.
If the Method succeeds an ApplicationId is returned. This ApplicationId should be
persisted for further interaction with the GDS regarding this application.
If the Method fails, a DiscoveryAdmin is needed to identify and correct the issue.
Typical errors include insufficient rights or conflicts with other application records .

Browse CertificateGroups The Browse Service is used to get the list of GDS managed CertificateGroups by
browsing the CertificateGroups Folder of the Directory Object.
If more than one CertificateGroup is returned, the user selects the relevant
CertificateGroups needed for the application.
The selected CertificateGroupIds should be persisted together with the ApplicationId.

Registration end options The following options are possible to complete the registration with the
CertificateManager:

1. Continue with PullManagement using the existing connection to the GDS.
This option is typically used by Clients executing the registration in an
interactive mode for their own identity. See 7.6 for the PullManagement
workflow.

2. Continue with PullManagement inside a headless application.
3. Continue with PushManagement.

Set application Certificate
on GDS

For option (2) the current application Certificate must be configured for the application
on the GDS to allow Application authentication for the initial PullManagement
sequence. This configuration in the GDS is currently not in the scope of this
specification.

Configure
PushManagement

For option (3) the application must be configured for PushManagement in the
CertificateManager. The configuration of the PushManagement in the
CertificateManager is currently not in the scope of this specification.

Disconnect For options (2) and (3) the configuration tool disconnects from the GDS.

6.6 Information Model

6.6.1 Overview

The GlobalDiscoveryServer Information Model used for discovery is shown in Figure 13. Most
of the interactions between the GlobalDiscoveryServer and Application administrator or the
Client will be via Methods defined on the Directory folder.

OPC 10000-12: Discovery, Global Services 20 1.05.04

DirectoryType:

Directory

FolderType:

Applications

FindApplications

Register

Application

Unregister

Application

GetApplication

QueryServers

(deprecated)

Update

Application

Query

Applications

Figure 13 – The Address Space for the GDS

6.6.2 Directory

This Object is the root of the GlobalDiscoveryServer AddressSpace and it is the target of an
Organizes reference from the Objects folder defined in OPC 10000-5. It organizes the
information that can be accessed into subfolders. The implementation of a GDS can customize
and organize the folders in any manner it desires. For example folders can exist for information
models, or for optional services or for various locations in an administrative domain. It is defined
in Table 4.

Table 4 – Directory Object Definition

Attribute Value

BrowseName 2:Directory

TypeDefinition 2:DirectoryType defined in 6.6.3.

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Conformance Units

GDS Application Directory

6.6.3 DirectoryType

DirectoryType is the ObjectType for the root of the GlobalDiscoveryServer AddressSpace. It
organizes the information that can be accessed into subfolders It also provides methods that
allow applications to register or find applications. It is defined in Table 5.

Table 5 – DirectoryType Definition

Attribute Value

BrowseName 2:DirectoryType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:FolderType defined in OPC 10000-5.

0:HasComponent Object 2:Applications - 0:FolderType Mandatory

0:HasComponent Method 2:FindApplications Defined in 6.6.4. Mandatory

0:HasComponent Method 2:RegisterApplication Defined in 6.6.6. Mandatory

0:HasComponent Method 2:UpdateApplication Defined in 6.6.7. Mandatory

0:HasComponent Method 2:UnregisterApplication Defined in 6.6.8. Mandatory

0:HasComponent Method 2:GetApplication Defined in 6.6.9. Mandatory

0:HasComponent Method 2:QueryApplications Defined in 6.6.10. Mandatory

0:HasComponent Method 2:QueryServers Defined in 6.6.11. Mandatory

Conformance Units

GDS Application Directory

1.05.04 21 OPC 10000-12: Discovery, Global Services

The Applications folder may contain Objects representing the Applications known to the GDS.
These Objects may be organized into subfolders as determined by the GDS. Some
characteristics for organizing applications are the networks, the physical location, or the
supported profiles. The QueryApplications Method can be used to search for OPC UA
Applications based on various criteria.

A GDS is not required to expose its Applications as browsable Objects in its AddressSpace,
however, each Application shall have a unique NodeId which can be passed to Methods used
to administer the GDS.

The FindApplications Method returns the Applications associated with an ApplicationUri. It can
be called by any Client application.

The RegisterApplication Method is used to add a new Application to the GDS. It requires
administrative privileges.

The UpdateApplication Method is used to update an existing Application in the GDS. It requires
administrative privileges.

The UnregisterApplication Method is used to remove an Application from the GDS. It requires
administrative privileges.

The QueryApplications Method is used to find Client or Server applications that meet the criteria
provided. This Method replaces the QueryServers Method.

The QueryServers Method is used to find Servers that meet the criteria specified. It can be
called by any Client application. This Method has been replaced by the QueryApplications
Method

6.6.4 FindApplications

FindApplications is used to find the ApplicationId for an approved OPC UA Application (see
6.6.6 or 6.4). This list of records returned shall have zero or one element.

If the returned array is null or zero length then the GDS does not have an entry for the
ApplicationUri.

Signature

FindApplications(

 [in] String applicationUri

 [out] ApplicationRecordDataType[] applications

);

Argument Description

applicationUri The ApplicationUri that identifies the Application of interest.

applications A list of application records that match the ApplicationUri.
The ApplicationRecordDataType is defined in 6.6.5.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The ApplicationUri is too long or not a valid URI.

Table 6 specifies the AddressSpace representation for the FindApplications Method.

Table 6 – FindApplications Method AddressSpace Definition

Attribute Value

BrowseName 2:FindApplications

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

OPC 10000-12: Discovery, Global Services 22 1.05.04

6.6.5 ApplicationRecordDataType

This type defines a DataType which represents a record in the GDS .

If the ApplicationType is Client and the serverCapabilities includes RCP (reverse connect) then
all DiscoveryUrls shall begin with the rcp+ prefix which indicates that reverse connections are
supported. Otherwise, the DiscoveryUrls shall be empty.

If the ApplicationType is ClientAndServer the serverCapabilities may include RCP and all
DiscoveryUrls that support reverse connect have the rcp+ prefix. If the same URL supports
normal connetions and reverse connection then there shall be two elements in the
DiscoveryUrls array with and without the rcp+ prefix.

Table 7 – ApplicationRecordDataType Structure

Name Type Description

ApplicationRecordDataType Structure Subtype of the Structure DataType defined in OPC 10000-5

 ApplicationId NodeId The unique identifier assigned by the GDS to the record.
This NodeId may be passed to other Methods.

 ApplicationUri String The URI for the Application associated with the record.

 ApplicationType ApplicationType The type of application.
This type is defined in OPC 10000-4.

 ApplicationNames LocalizedText[] One or more localized names for the application.
The first element is the default ApplicationName for the application
when a non-localized name is needed.

 ProductUri String A globally unique URI for the product associated with the
application.
This URI is assigned by the vendor of the application.

 DiscoveryUrls String[] The list of discovery URLs for an application.

The first HTTPS URL specifies the domain used as the Common
Name of HTTPS Certificates.

 ServerCapabilities String[] The list of server capability identifiers for the application.
The allowed values are defined in Annex D.

Its representation in the AddressSpace is defined in Table 8.

Table 8 – ApplicationRecordDataType Definition

Attribute Value

BrowseName 2:ApplicationRecordDataType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:Structure DataType defined in OPC 10000-5.

Conformance Units

GDS Application Directory

6.6.6 RegisterApplication

RegisterApplication is used to register a new Application Instance with a GlobalDiscoveryServer.

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the DiscoveryAdmin Role or the ApplicationAdmin Privilege (see 6.2).

Servers that support transparent redundancy shall register as a single application and pass the
DiscoveryUrls for all available instances and/or network paths.

Servers that support non-transparent redundancy shall register as different applications. In
addition, OPC 10000-4 requires the use of the NTRS ServerCapability defined in Annex D.

RegisterApplication shall not create duplicate records. If the ApplicationUri already exists the
Method returns Bad_EntryExists.

If RegisterApplication succeeds the OPC UA Application is approved and is returned by
QueryApplications and FindApplications.

1.05.04 23 OPC 10000-12: Discovery, Global Services

If registration was successful and auditing is supported, the GDS shall generate the
ApplicationRegistrationChanged AuditEventType (see 6.6.12).

Signature

RegisterApplication(

 [in] ApplicationRecordDataType application

 [out] NodeId applicationId

);

Argument Description

application The application that is to be registered with the GlobalDiscoveryServer.

applicationId A unique identifier for the registered Application.
This identifier is persistent and is used in other Methods used to administer
applications.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The application or one of the fields of the application record is not valid.
The text associated with the error shall indicate the exact problem.

Bad_EntryExists A record with the same ApplicationUri already exists.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 9 specifies the AddressSpace representation for the RegisterApplication Method.

Table 9 – RegisterApplication Method AddressSpace Definition

Attribute Value

BrowseName 2:RegisterApplication

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

6.6.7 UpdateApplication

UpdateApplication is used to update an existing Application in a GlobalDiscoveryServer.

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the DiscoveryAdmin Role, the ApplicationSelfAdmin Privilege, or the
ApplicationAdmin Privilege (see 6.2).

When updating an existing Application the ApplicationUri cannot be changed. If it is changed
the Method returns Bad_WriteNotSupported.

If the update was successful and auditing is supported, the GDS shall generate the
ApplicationRegistrationChanged AuditEventType (see 6.6.12).

Signature

UpdateApplication(

 [in] ApplicationRecordDataType application

);

Argument Description

application The application that is to be updated in the GDS database.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId is not known to the GDS.

Bad_InvalidArgument The application or one of the fields of the application record is not valid.
The text associated with the error shall indicate the exact problem.

Bad_WriteNotSupported The applicationUri was changed and it cannot be updated.

Bad_UserAccessDenied The current user does not have the rights required.

OPC 10000-12: Discovery, Global Services 24 1.05.04

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 10 specifies the AddressSpace representation for the UpdateApplication Method.

Table 10 – UpdateApplication Method AddressSpace Definition

Attribute Value

BrowseName 2:UpdateApplication

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

6.6.8 UnregisterApplication

UnregisterApplication is used to remove an Application from a GlobalDiscoveryServer.

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the DiscoveryAdmin Role, the ApplicationSelfAdmin Privilege, or the
ApplicationAdmin Privilege (see 6.2).

This Method shall only be invoked by authorized users.

A Server Application that is unregistered may be automatically added again if the GDS is
configured to populate itself by calling FindServersOnNetwork and the Server Application is still
registering with its local LDS.

If an Application has Certificates issued by the CertificateManager, these Certificates shall be
revoked when this Method is called.

If un-registration was successful and auditing is supported, the GDS shall generate the
ApplicationRegistrationChanged AuditEventType (see 6.6.12).

Signature

UnregisterApplication(

 [in] NodeId applicationId

);

Argument Description

applicationId The identifier assigned by the GDS to the Application.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId is not known to the GDS.

Bad_UserAccessDenied The current user does not have the rights needed to unregister the
application.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 11 specifies the AddressSpace representation for the UnregisterApplication Method.

Table 11 – UnregisterApplication Method AddressSpace Definition

Attribute Value

BrowseName 2:UnregisterApplication

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

6.6.9 GetApplication

GetApplication is used to find an OPC UA Application known to the GDS.

Signature

GetApplication(

 [in] NodeId applicationId

 [out] ApplicationRecordDataType application

1.05.04 25 OPC 10000-12: Discovery, Global Services

);

Argument Description

applicationId The ApplicationId that identifies the Application of interest.

application The application record that matches the ApplicationId.
The ApplicationRecordDataType is defined in 6.6.5

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId is not known to the GDS.

Bad_UserAccessDenied The current user does not have the rights needed to read the requested record.

Table 12 specifies the AddressSpace representation for the GetApplication Method.

Table 12 – GetApplication Method AddressSpace Definition

Attribute Value

BrowseName 2:GetApplication

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

6.6.10 QueryApplications

QueryApplications is used to find Client or Server applications that meet the specified filters.
The only Clients returned are those that support the reverse connection capability described in
OPC 10000-6.

QueryApplications returns ApplicationDescriptions instead of the ServerOnNetwork Structures
returned by QueryServers. This is more useful to some Clients because it matches the return
type of FindServers.

Any Client is able to call this Method, however, the set of results returned may be restricted
based on the Client’s user credentials.

The applications returned shall pass all of the filters provided (i.e. the filters are combined in
an AND operation). The capabilities parameter is an array and an application will pass this filter
if it supports all of the specified capabilities.

Each time the GDS creates or updates an application record it shall assign a monotonically
increasing identifier to the record. This allows Clients to request records in batches by
specifying the identifier for the last record received in the last call to QueryApplications. To
support this the GDS shall return records in order starting from the lowest record identifier. The
GDS shall also return the last time the counter was reset . If a Client detects that this time is
more recent than the last time the Client called the Method it shall call the Method again with a
startingRecordId of 0.

The lastCounterResetTime parameter is used to indicate that the counters on records had to
be reset for some reason such as a Server restart. The Client may not use any nextRecordId
received prior to this time to set the value for the startingRecordId in a new call.

The return parameter is a list of ApplicationDescriptions. The mapping from a ApplicationRecord
to an ApplicationDescriptions is shown in Table 13.

OPC 10000-12: Discovery, Global Services 26 1.05.04

Table 13 – ApplicationRecordDataType to ApplicationDescription Mapping

ApplicationRecordDataType ApplicationDescription Notes

 applicationId -- Ignored

 applicationUri applicationUri

 applicationType applicationType

 applicationNames applicationName The name that best matches the
preferredLocales for the current
Session is returned. If there is no
Session the first element is returned.

 productUri productUri

 discoveryUrls discoveryUrls

 -- gatewayServerUri Set to NULL.

 -- discoveryProfileUri Set to NULL.

 serverCapabilities -- Ignored

Signature

QueryApplications(

 [in] UInt32 startingRecordId

 [in] UInt32 maxRecordsToReturn

 [in] String applicationName

 [in] String applicationUri

 [in] UInt32 applicationType

 [in] String productUri

 [in] String[] capabilities

 [out] UtcTime lastCounterResetTime

 [out] UInt32 nextRecordId

 [out] ApplicationDescription[] applications

);

Argument Description

INPUTS

startingRecordId Only records with an identifier greater than this number will be returned.
Specify 0 to start with the first record in the database.

maxRecordsToReturn The maximum number of records to return in the response.
0 indicates that there is no limit.

applicationName The ApplicationName of the applications to return.
Supports the syntax used by the LIKE FilterOperator described in OPC 10000-4.
Not used if an empty string is specified.
The filter is only applied to the default ApplicationName.

applicationUri The ApplicationUri of the applications to return.
Supports the syntax used by the LIKE FilterOperator described in OPC 10000-4.
Not used if an empty string is specified.

applicationType A mask indicating what types of applications are returned.
The mask values are:
 0x1 – Servers;
 0x2 – Clients;
If the mask is 0 then all applications are returned.

productUri The ProductUri of the applications to return.
Supports the syntax used by the LIKE FilterOperator described in OPC 10000-4.
Not used if an empty string is specified.

capabilities The capabilities supported by the applications returned.
The applications returned shall support all of the capabilities specified.
If no capabilities are provided this filter is not used.
The allowed values are defined in Annex D.

OUTPUTS

lastCounterResetTime The last time the counters were reset.

nextRecordId The identifier of the next record. It is passed as the startingRecordId in subsequent
calls to QueryApplications to fetch the next batch of records. It is 0 if there are no
more records to return.

applications A list of Applications which meet the criteria.
The ApplicationDescription structure is defined in OPC 10000-4.

Table 14 specifies the AddressSpace representation for the QueryApplications Method.

1.05.04 27 OPC 10000-12: Discovery, Global Services

Table 14 – QueryApplications Method AddressSpace Definition

Attribute Value

BrowseName 2:QueryApplications

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

6.6.11 QueryServers (deprecated)

QueryServers is used to find Server applications that meet the specified filters.

Any Client is able to call this Method, however, the set of results returned may be restricted
based on the Client’s user credentials.

The applications returned shall pass all of the filters provided (i.e. the filters are combined in
an AND operation). The serverCapabilities parameter is an array and an application will pass
this filter if it supports all of the specified capabilities.

Each time the GDS creates or updates an application record it shall assign a monotonically
increasing identifier to the record. This allows Clients to request records in batches by
specifying the identifier for the last record received in the last call to QueryServers. To support
this the GDS shall return records in order starting from the lowest record identifier. The GDS
shall also return the last time the counter was reset . If a Client detects that this time is more
recent than the last time the Client called the Method it shall call the Method again with a
startingRecordId of 0.

The lastCounterResetTime parameter is used to indicate that the counters on records had to
be reset for some reason such as a Server restart. The Client may not use any recordId received
prior to this time to set the value for the startingRecordId in a new call.

The return parameter is a list of ServerOnNetwork Structures. The mapping from a
ApplicationRecordDataType to an ServerOnNetwork is shown in Table 15.

Table 15 – ApplicationRecordDataType to ServerOnNetwork Mapping

ApplicationRecordDataType ServerOnNetwork Notes

 applicationId -- Ignored

 applicationUri -- Ignored

 applicationType -- Ignored

 applicationNames serverName The name that best matches the
preferredLocales for the current
Session is returned. If there is no
Session the first element is returned.

 productUri -- Ignored

 discoveryUrls discoveryUrl A ServerOnNetwork record is returned
for each discoveryUrl in the
ApplicationRecord.

 serverCapabilities serverCapabilities

 -- recordId This is the recordId assigned by the
QueryServers call. It may be used as
the startedRecordId in a subsequent
call to QueryServers.

Signature

QueryServers(

 [in] UInt32 startingRecordId

 [in] UInt32 maxRecordsToReturn

 [in] String applicationName

 [in] String applicationUri

 [in] String productUri

 [in] String[] serverCapabilities

 [out] UtcTime lastCounterResetTime

 [out] ServerOnNetwork[] servers

OPC 10000-12: Discovery, Global Services 28 1.05.04

);

Argument Description

INPUTS

startingRecordId Only records with an identifier greater than this number will be returned.
Specify 0 to start with the first record in the database.

maxRecordsToReturn The maximum number of records to return in the response.
0 indicates that there is no limit.

applicationName The ApplicationName of the Applications to return.
Supports the syntax used by the LIKE FilterOperator described in OPC 10000-4.
Not used if an empty string is specified.
The filter is only applied to the default ApplicationName.

applicationUri The ApplicationUri of the Servers to return.
Supports the syntax used by the LIKE FilterOperator described in OPC 10000-4.
Not used if an empty string is specified.

productUri The ProductUri of the Servers to return.
Supports the syntax used by the LIKE FilterOperator described in OPC 10000-4.
Not used if an empty string is specified.

serverCapabilities The applications returned shall support all of the server capabilities specified. If
no server capabilities are provided this filter is not used.

OUTPUTS

lastCounterResetTime The last time the counters were reset.

servers A list of Servers which meet the criteria.
The ServerOnNetwork structure is defined in OPC 10000-4.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Table 16 specifies the AddressSpace representation for the QueryServers Method.

Table 16 – QueryServers Method AddressSpace Definition

Attribute Value

BrowseName 2:QueryServers

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

6.6.12 ApplicationRegistrationChangedAuditEventType

This event is raised when the RegisterApplication, UpdateApplication or UnregisterApplication
Methods are called.

Its representation in the AddressSpace is formally defined in Table 17.

Table 17 – ApplicationRegistrationChangedAuditEventType Definition

Attribute Value

BrowseName 2:ApplicationRegistrationChangedAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the 0:AuditUpdateMethodEventType defined in OPC 10000-5.

Conformance Units

GDS Application Directory

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantics
are defined in OPC 10000-5.

7 Certificate Management

7.1 Overview

Certificate management functions comprise the management and distribution of certificates and
TrustLists for OPC UA Applications. An application that provides the certificate management

1.05.04 29 OPC 10000-12: Discovery, Global Services

functions is called CertificateManager. GDS and CertificateManager will typically be combined
in one application. The basic concepts regarding Certificate management are described in OPC
10000-2.

There are two primary models for Certificate management: PullManagement and
PushManagement. In PullManagement, the application acts as a Client and uses the Methods
on the CertificateManager to request and update Certificates and TrustLists. The application is
responsible for ensuring the Certificates and TrustLists are kept up to date. In PushManagement
the application acts as a Server and exposes Methods which the CertificateManager can call to
update the Certificates and TrustLists as required.

The CertificateManager is intended to work in conjunction with different Certificate management
services such as Active Directory. The CertificateManager provides a standard OPC UA based
information model that all OPC UA Applications can support without needing to know the
specifics of a particular Certificate management system.

The CertificateManager should support the following features:

• Onboarding (first time setup for a device/application);

• Renewal (renewing expired or compromised certificates);

• TrustList Update (updating the TrustLists including the Revocation Lists);

• Revocation (removing a device/application from the system).

Although it is generally assumed that Client applications will use the Pull model and Server
applications will use the Push model, this is not required.

OPC 10000-21 defines the complete process to automatically authenticate and onboard new
Devices that depends on the Devices having support built in by the Manufacturer. If this support
is not present, Devices and OPC UA Applications have to be manually onboarded using the
mechanisms defined in this document.

During manual onboarding, the CertificateManager shall be able to operate in a mode where
any Client is allowed to connect securely with any valid Certificate and user credentials are
used to determine the rights a Client has; this eliminates the need to configure TrustLists before
connecting to the CertificateManager for application setup, Application vendors may decide to
build the interaction with the CertificateManager as a separate component, e.g. as part of an
administration application with access to the OPC UA configuration of this Application. This is
transparent for the CertificateManager and will not be considered further in the rest of this
chapter.

Clients shall only connect to a CertificateManager which the Client has been configured to trust.
This may require an out of band configuration step which is completed prior to starting the
manual onboarding process.

This standard does not define how to administer a CertificateManager but a CertificateManager
shall provide an integrated system that includes both push and PullManagement.

7.2 Roles and Privileges

CertificateManagers restrict access to many of the features they provide. These restrictions are
described either by referring to well-known Roles which a Session must have access to or by
referring to Privileges which are assigned to Sessions using mechanisms other than the well-
known Roles. The well-known Roles used for CertificateManagers are listed in Table 18.

Table 18 – Well-known Roles for a CertificateManager

Name Description

CertificateAuthorityAdmin This Role grants rights to request or revoke any Certificate, update any TrustList or
assign CertificateGroups to OPC UA Applications.

RegistrationAuthorityAdmin This Role grants rights to approve Certificate Signing requests or NewKeyPair
requests.

OPC 10000-12: Discovery, Global Services 30 1.05.04

SecurityAdmin This Role grants the right to change the security configuration of a
CertificateManager.

The well-known Roles for Server managed by a CertificateManager are listed in Table 19.

Table 19 – Well-known Roles for Server managed by a CertificateManager

Name Description

SecurityAdmin For PushManagement, this Role grants the right to change the security configuration of
a Server managed by a CertificateManager.

The Privileges used in for CertificateManagers are listed in Table 20.

Table 20 – Privileges for a CertificateManager

Name Description

ApplicationSelfAdmin This Privilege grants an OPC UA Application the right to renew its own Certificate or
read its own CertificateGroups and TrustLists.

The Certificate used to create the SecureChannel is used to determine the identity of the
OPC UA Application.

ApplicationAdmin This Privilege grants rights to request or renew Certificates, read TrustLists or
CertificateGroups for one or more OPC UA Applications.

The Certificate used to create the SecureChannel is used to determine the identity of the
OPC UA Application and the set of OPC UA Applications that it is authorized to manage.

7.3 Pull Management

PullManagement is performed by using the CertificateManager information model, in particular
the Methods defined in 7.9. The interactions between Application and CertificateManager during
PullManagement are illustrated in Figure 14.

1.05.04 31 OPC 10000-12: Discovery, Global Services

loop

Application
Administration

Certificate
Manager

Application
Configuration

Database

StartSigningRequest or StartNewKeyPairRequest

RequestId

FinishRequest

Wait

Certificate

GetTrustList

Trust List

Certificate

Trust List

Read Configuration

RegisterApplication

[While Status == Bad_NothingToDo]

Figure 14 – The Pull Management Model for Certificates

The Application Administration component may be part of the Client or Server or a standalone
utility that understands how the application persists its configuration information in its
Configuration Database.

A similar process is used to renew certificates or to periodically update TrustList.

Security in PullManagement requires an encrypted channel and authorized credentials. These
credentials may be user credentials for a CertificateAuthorityAdmin or application credentials
determined by the Certificate used to create the SecureChannel. Examples of the application
credentials include Certificates previously issued to the application being accessed, Device
Certificates issued by the Registrar defined in OPC 10000-21 or Certificates isssued to an
application with accesss to the ApplicationAdmin Privilege (see 6.2).

Before a Client provides any secrets associated with credentials to a CertificateManager it
needs to know that it can trust the CertificateManager. This can be done by an administrator
that adds the CertificateManager to the Client TrustList before the Client attempts to connect
to the CertificateManager. If the Client finds a CertificateManager on a network via mDNS or
other insecure mechanism it could trust the CertificateManager if it has some independently
acquired information that allows it to trust the CertificateManager. For example, the DNS
address of the CertificateManager could be provided by a trusted authority and this address
appears in the Certificate of the CertificateManager being used and the address was used to
connect.

Once the Client finds a CertificateManager that it can trust, it needs to provide credentials that
allows the CertificateManager to know that it can issue Certificates. The Certificate used by the
Client can be the credential if there is an out of band process to provide the Certificate to the
CertificateManager. The CertificateManager could provide a one-time password to the Client
via email or other mechanisms.

OPC 10000-12: Discovery, Global Services 32 1.05.04

The CertificateManager can only issue Certificates to authenticated Clients. There are a number
of ways to authenticate Clients:

1) The CertificateManager is pre-configured with information about the Client Certificate
that allows the CertificateManager to know that the Client can request Certificates even
if anonymous user credentials are used. The Client may be a DCA authenticated by a
Registrar (see OPC 10000-21), a Client with a previously issued Certificate, or a Client
authorized to create Certificates on behalf of other applications.

2) The CertificateManager may have a manual process where an administrator reviews
each request before issuing a Certificate.

3) The Client provides user credentials. A Client shall not provide a secret (e.g. a password)
to an untrusted CertificateManager.

7.4 Push Management

PushManagement is targeted at Server applications and relies on Methods defined in 7.10 to
get a CertificateRequest which can be passed onto the CertificateManager. After the
CertificateManager signs the Certificate the new Certificate is pushed to the Server with the
UpdateCertificate Method.

The interactions between a Server Application and CertificateManager during
PushManagement are illustrated in Figure 15.

loop

Administration
Component

Certificate
Manager

Server
Configuration

Database

GetTrustList

Trust List

UpdateCertificate

TrustList.Open

Trust List

Certificate

TrustList.Write

TrustList.CloseAndUpdate

CreateSigningRequest

Certificate Request (CSR)

StartSigningRequest

FinishRequest

Certificate

Update
Cert.

Update
Trust
List

Figure 15 – The Push Certificate Management Model

The Administration Component may be part of the CertificateManager or a standalone utility
that uses OPC UA to communicate with the CertificateManager (see 7.3 for a more complete
description of the interactions required for this use case). The Configuration Database is used
by the Server to persist its configuration information. The RegisterApplication Method (or
internal equivalent) is assumed to have been called before the sequence in the diagram starts.

1.05.04 33 OPC 10000-12: Discovery, Global Services

A similar process is used to renew certificates or to periodically update TrustList. In Figure 15
the TrustList update is shown to happen first. This is necessary to ensure any CRLs are
provided to the Server before the new Certificate is updated. The TrustList update may be
skipped If the current TrustList allows the Server to validate the new Certificate.

Security when using the PushManagement model requires an encrypted channel and a Client
with access to the SecurityAdmin Role. For example, SecurityAdmin Role could be mapped to
user credentials for an administrator or to a ApplicationInstance Certificate issued to a
configuration tool. OPC 10000-21 defines a mechanism to install administrative Client
Certificates into the Server TrustList.

7.5 Application Setup

Application Setup is the initial installation of an OPC UA Server or Client into a system in which
a GDS is available and managing Certificates. Applications using a Client interface can be setup
using the PullManagement. Applications using a Server interface can be setup using the
PushManagement.

The push and PullManagement are also integrated into OPC 10000-21 which specifies how new
Devices can be authenticated when they are added to the network. Once a Device is
authenticated the Device is trusted and can use the push or PullManagement without additional
administrator credentials.

OPC UA Servers that do not support OPC 10000-21 typically auto-generate a self-signed
Certificate when they first start. They may also have a pre-configured TrustList with Applications
that are allowed to setup the Server. For example, a machine vendor may use a CA that is used
to issue Certificates to Applications used by their field technicians.

For embedded devices, the Server should allow any Client that provides the proper
SecurityAdmin credentials to create the secure connection needed for setup using
PushManagement. Once the Server has been given its initial TrustList the Server should then
restrict access to those Clients with Certificates in the TrustList. A vendor specific process for
setup is required if a device restricts the Clients allowed to connect securely.

See Annex G for more specific examples of how to provision an application when OPC 10000-
21 is not used.

7.6 Pull Management Workflow

In this workflow the OPC UA Application that gets Certificates from the CertificateManager is
the Client that executes the workflow and the CertificateManager is the Server processing the
request in the workflow.

The Application is authenticated with the Certificate signed by the CertificateManager (or the
Certificate assigned during registration). The UserTokenType is always Anonymous using the
ApplicationSelfAdmin Privilege.

The workflow for PullManagement is shown in Figure 16 and the steps are described in Table
21. The two options for the key pair creation are described in Figure 17. The boxes with blue
text indicate Method calls.

OPC 10000-12: Discovery, Global Services 34 1.05.04

Key pair creation
Repeated for every certificate type

Connect

Idle

Method
Result

Good

Bad_NothingToDo

GetCertificateStatus

Timer

No

true
Create Private Key

Create CSR

StartSigningRequest

FinishRequest

Disconnect

GetTrustList

TrustListType::Read

Persist TrustList
(and Certificate if new)

Update
Required

false

TrustList
UpdateFrequency

Idle

Max Repeat
Count reached

No

Yes

SigningRequest
Pending

Yes

Other Bad

All
CertificateGroups

processed

Yes

No

Continue with next
CertificateGroupId

Set FinishRequest

repeat count to 0

Start with first
CertificateGroupId

CertificateManager persistence:
ApplicationId NodeId
CertificateGroups NodeId[]
PendingSigningRequests NodeId[]

Registration
Completed

Figure 16 – Certificate Pull Management Workflow

1.05.04 35 OPC 10000-12: Discovery, Global Services

Key pair request
Private key created by
CertificateManager

Only used if application does not
have access to the entropy
necessary for creating private
keys.

StartNewKeyPairRequest

FinishRequest

Signing request
Private key created by application

Create CSR

StartSigningRequest

FinishRequest

Create Private Key

Signed certificate
returned by

CertificateManager

Private key created
by application

Private key created by
CertificateManager

and returned in
FinishRequest

Key Pair Creation

Figure 17 – The Pull Management Options for Key Pair Creation

The steps of the PullManagement workflow are described in detail in Table 21.

Table 21 – Certificate Pull Management Workflow Steps

Step Description

Certificate management
begin options

The following options are possible to start the PullManagement.
1. Continue application setup using the Session available from the application

registration workflow described in 6.5.
2. Cyclic check of the application status using a new connection to the

CertificateManager. The cycle time is defined by the UpdateFrequency on
the related TrustList Object in the CertificateManager.

Connect Create a connection for option (2). For the connection management with the
CertificateManager the Services OpenSecureChannel, CreateSession and
ActivateSession are used to create a connection with MessageSecurityMode
SignAndEncrypt and an Anonymous user.
Application authentication is used by the CertificateManager to allow OPC UA
Applications to access the necessary resources to update themselves using the
ApplicationSelfAdmin Privilege .

Required information The OPC UA Application needs to know the following information to execute the
PullManagement workflow

• ApplicationId
NodeId of the OPC UA Application in the CertificateManager.

• CertificateGroupIds
NodeIds for each CertificateGroup in the CertificateManager that are
relevant to the OPC UA Application. This includes a mapping to the related
internal CertificateGroup and the CertificateTypes needed.

• Pending signing requests
RequestIds for pending signing requests that need to be completed and
their relationship with a CertificateGroup and CertificateType.

SigningRequestPending If one or more signing requests are pending for a CertificateGroup, the FinishRequest
Method is called directly with the ApplicationId and the RequestId for the pending
signing request. The repeat count is set to 0 in this case.

GetCertificateStatus The Method GetCertificateStatus is called with the ApplicationId and the
CertificateGroupId to check if a certificate update is needed. This is repeated for each
CertificateType needed for the CertificateGroup.

Update Required If GetCertificateStatus returns updateRequired set to True for one or more
combinations of CertificateGroup and CertificateType, the process for key pair
creation is started for the affected combinations.

Create CSR The application creates a certificate signing request (CSR). It is strongly
recommended, that the OPC UA Application creates a new private key for each signing
request.

StartSigningRequest The Method StartSigningRequest is called for each CertificateGroup and
CertificateType together with the CSR to request a signed Certificate from the
CertificateManager. Each Method call needs it’s own CSR.
As alternative for OPC UA Applications who do not have access to a cryptograhically
sufficient entropy source, the Method StartNewKeyPairRequest can be used. In this
case the private key is created by the CertificateManager.

OPC 10000-12: Discovery, Global Services 36 1.05.04

Both Methods return a RequestId that can be passed to the FinishRequest Method.
The repeat count for FinishRequest is set to a small number like 2.

FinishRequest The Method FinishRequest is called to check the results of a previous
StartSigningRequest or StartNewKeyPairRequest.
The following results are possible:

• If FinishRequest returns a Good result, the Method returns the signed
Certificate and optionally the private key for the StartNewKeyPairRequest
case.

• If FinishRequest returns Bad_NothingToDo it indicates that the request is not
completed yet. If the repeat count is not 0, the repeat count is decremented
and FinishRequest is repeated after a short delay. If the repeat count is 0,
the RequestId is persisted and the next CertificateGroup or CertificateType
is processed

• If FinishRequest returns any other Bad result, a new request must be sent in
the next cycle

GetTrustList If all Certificates for a CertificateGroup are up-to-date, the TrustList is checked for
updates by calling the Method GetTrustList. The Method returns the NodeId of the
TrustList Object for the CertificateGroup. The LastUpdateTime of TrustList Object
indicates when the contents of the TrustList changed. When using PullManagement,
the Client should check this Property before downloading the TrustList.

TrustListType::Read The NodeId of the TrustList Object returned by GetTrustList is used to open the
TrustList for reading and to read the current content of the TrustList.

Persist TrustList If a TrustList update or Certificate updates are available, they are persisted for further
use by the OPC UA Application. They must be persisted at the same time to ensure a
consistent setup.

Repeat for all
CertificateGroups

Repeat the process for all CertificateGroups.

Disconnect Disconnect from CertificateManager.

7.7 Push Management Workflow

In this workflow the CertificateManager is the Client that executes the steps and the OPC UA
Application is the Server that is processing the request in the sequence. The workflow is started
if the CertificateManager determines that an update is required.

The workflow for PushManagement is shown in Figure 18. The two options for the key pair
creation are described in Figure 19. The boxes with blue text indicate Method calls.

1.05.04 37 OPC 10000-12: Discovery, Global Services

Key Pair Creation
Repeated for every certificate type

Connect

Update Required

CreateSigningRequest

UpdateCertificate

Disconnect

TrustListType::Open

TrustListType::Write

No

Idle

Certificate
update

required

All CertificeGroups
processed

Yes

No

Continue with next
CertificateGroupId

PUSH persistence for application:
EndpointUrl (DiscoveryUrl in record)
ApplicationUri (in record)
UserToken
CertificateGroups NodeId[]

Yes

TrustListType::CloseAnd
Update

ApplyChanges
required

ApplyChanges

Yes

No

Get signed certificate
from CA

Figure 18 – The Certificate Push Management Workflow

OPC 10000-12: Discovery, Global Services 38 1.05.04

Key pair update
Private key created by
CertificateManager
Only used if application does not
have access to the entropy
necessary for creating private keys.

UpdateCertificate

Signing request
Private key created by application

Get signed certificate
from CA

CreateSigningRequest

UpdateCertificate
Signed certificate

pushed by
CertificateManager

Private key created by
and kept in application

Private key created by
CertificateManager

and included in
UpdateCertificate Get signed certificate

from CA

Create private key

Key Pair Creation

Figure 19 – The Push Management Options for Key Pair Creation

7.8 Common Information Model

7.8.1 Overview

The common information model defines types that are used in both the Push and the Pull Model.

7.8.2 TrustLists

7.8.2.1 TrustListType

This type defines a FileType that can be used to access a TrustList.

The CertificateManager uses this type to implement the Pull Model.

Servers use this type when implementing the Push Model.

An instance of a TrustListType shall restrict access to appropriate users or applications. This
may be a CertificateManager administrative user that can change the contents of a TrustList, it
may be an Administrative user that is reading a TrustList to deploy to an Application host or it
may be an Application that can only access the TrustList assigned to it.

The TrustList file is a UA Binary encoded stream containing an instance of TrustListDataType
(see 7.8.2.6).

The Open Method shall not support modes other than Read (0x01) and the Write +
EraseExisting (0x06).

If a transaction is in progress (see 7.10.7) on another Session then the Server shall return
Bad_TransactionPending if Open is called with the Write Mode bit set. If the Server supports
transactions then the Server creates a new transaction or continues an existing transaction if
Open is called with the Write Mode bit set.

If the SecureChannel is not authenticated the Server shall return Bad_SecurityModeInsufficient.

Servers shall automatically Close TrustLists if there are no calls to Methods on the TrustList
Object within the time specified by the ActivityTimeout Property.

The Size Property inherited from FileType has no meaning for TrustList and returns the error
code defined in OPC 10000-20.

1.05.04 39 OPC 10000-12: Discovery, Global Services

When a Client opens the file for writing the Server will not actually update the TrustList until the
CloseAndUpdate Method is called. Simply calling Close will discard the updates. The bit masks
in TrustListDataType structure allow the Client to only update part of the TrustList.

When the CloseAndUpdate Method is called the Server will validate all new Certificates and
CRLs. If this validation fails the TrustList is not updated and the Server returns the appropriate
Certificate error code (see OPC 10000-4).

Its representation in the AddressSpace is formally defined in Table 22.

Table 22 – TrustListType Definition

Attribute Value

BrowseName 0:TrustListType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:FileType defined in OPC 10000-20.

0:HasProperty Variable 0:LastUpdateTime 0:UtcTime 0:PropertyType Mandatory

0:HasProperty Variable 0:UpdateFrequency 0:Duration 0:PropertyType Optional

0:HasProperty Variable 0:ActivityTimeout 0:Duration 0:PropertyType Optional

0:HasProperty Variable 0:DefaultValidationOp
tions

TrustListValida
tionOptions

0:PropertyType Optional

0:HasComponent Method 0:OpenWithMasks Defined in 7.8.2.2. Mandatory

0:HasComponent Method 0:CloseAndUpdate Defined in 7.8.2.3. Mandatory

0:HasComponent Method 0:AddCertificate Defined in 7.8.2.4. Mandatory

0:HasComponent Method 0:RemoveCertificate Defined in 7.8.2.5. Mandatory

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

The LastUpdateTime indicates when the TrustList was last updated. The LastUpdateTime shall
reflect changes made using the TrustList Object Methods. A TrustList Object in a
CertificateManager shall also reflect changes made in other ways.

The LastUpdateTime of a TrustList Object in a CertificateManager allows Clients using the
PullManagement to know whether the TrustList has changed since the last time they accessed
it. The LastUpdateTime of a TrustList Object in the ServerConfiguration allows administration
Clients to check for out of date TrustLists.

The UpdateFrequency Property specifies how often the TrustList needs to be checked for
changes. When the CertificateManager specifies this value, all Clients that read a copy of the
TrustList should connect to the CertificateManager and check for updates to the TrustList within
2 times the UpdateFrequency. The choice of UpdateFrequency depends on how quickly system
changes need to be detected and the performance constraints of the system.
UpdateFrequencies that are too long create security risks because of out of date CRLs.
UpdateFrequencies that are too short negatively impact system performance. If the TrustList
Object is contained within a ServerConfiguration Object then this Property is not present.

The ActivityTimeout Property specifies the maximum elapsed time between the cal ls to Methods
on the TrustList Object after Open or OpenWithMasks is called. If this time elapses the TrustList
is automatically closed by the Server and any changes are discarded. The default value is 60
000 milliseconds (1 minute).

The DefaultValidationOptions Property specifies the default options to use when validating
Certificates with the TrustList. The TrustListValidationOptions DataType is defined in 7.8.2.8.
This Property may be updated by Clients with access to the SecurityAdmin Role.

If auditing is supported, the CertificateManager shall generate the
TrustListUpdatedAuditEventType (see 7.8.2.11) when the TrustList is updated via the
CloseAndUpdate, AddCertificate, RemoveCertificate or ApplyChanges (see 7.10.7) Methods.
The Event is only raised once after the asynchronous update process completes.

7.8.2.2 OpenWithMasks

The OpenWithMasks Method allows a Client to read only the portion of the TrustList.

OPC 10000-12: Discovery, Global Services 40 1.05.04

This Method can only be used to read the TrustList.

After calling this Method, the Client calls Read one or more times to get the TrustList. If the
Server is able to detect out of band changes to theTrustList before the Client calls the Close
Method, then the next Read returns Bad_InvalidState. If the Server cannot detect out of band
changes it shall ensure the Client receives a consistent snapshot.

For PullManagement, this Method shall be called from an authenticated SecureChannel and
from a Client that has access to the CertificateAuthorityAdmin Role, the ApplicationSelfAdmin
Privilege, or the ApplicationAdmin Privilege (see 7.2).

For PushManagement, this Method shall be called from an authenticated SecureChannel and
from a Client that has access to the SecurityAdmin Role (see 7.2).

Signature

OpenWithMasks(

 [in] UInt32 masks

 [out] UInt32 fileHandle

);

Argument Description

masks The parts of the TrustList that are include in the file to read.
The masks are defined in 7.8.2.7.

fileHandle The handle of the newly opened file.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_TransactionPending The TrustList cannot be opened because it is part of a transaction is in
progress.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 23 specifies the AddressSpace representation for the OpenWithMasks Method.

Table 23 – OpenWithMasks Method AddressSpace Definition

Attribute Value

BrowseName 0:OpenWithMasks

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.8.2.3 CloseAndUpdate

The CloseAndUpdate Method closes the TrustList and applies the changes to the TrustList. It
can only be called if the TrustList was opened for writing. If the Close Method is called any
cached data is discarded and the TrustList is not changed.

If only part of the TrustList is being updated the Server creates a new TrustList that includes
the existing TrustList plus any updates and validates the new TrustList.

The Server shall verify that every Certificate in the new TrustList is valid using the validation
process defined in OPC 10000-4. If an invalid Certificate is found the Server shall return an
error and shall not replace the existing TrustList.

If the Server does not support transactions it applies the changes immediately and sets
applyChangesRequired to FALSE. If the Server supports transactions then the Server creates
a new transaction or continues an existing transaction and sets applyChangesRequired to
TRUE.

1.05.04 41 OPC 10000-12: Discovery, Global Services

If a transaction exists on the current Session, the Server does not update the TrustList until
ApplyChanges (see 7.10.7) is called. Any Clients that read the TrustList before ApplyChanges
is called will receive the existing TrustList before the transaction started.

If errors occur, the new TrustList is discarded.

When the TrustList changes the Server shall re-evaluate the Certificate associated with any
open Sessions and SecureChannels. Sessions or SecureChannels with an untrusted or revoked
Certificate shall be closed. This process may not complete before the Method returns and could
take a significant amount of time on systems with limited resources.

The structure uploaded includes a mask (see 7.8.2.7) which specifies which fields are updated.
If a bit is not set then the associated field is not changed.

Signature

CloseAndUpdate(

 [in] UInt32 fileHandle

 [out] Boolean applyChangesRequired

);

Argument Description

fileHandle The handle of the previously opened file.

applyChangesRequired If TRUE the ApplyChanges Method (see 7.10.7) shall be called before the new
TrustList will be used by the Server. If FALSE the TrustList is now in use.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_CertificateInvalid The Server could not validate all Certificates in the TrustList.
The DiagnosticInfo shall specify which Certificate(s) are invalid and
the specific error.

Bad_RequestTooLarge The changes would result in a TrustList that exceeds the
MaxTrustListSize for the Server.

Bad_TransactionPending Changes are queued on another Session (see 7.10.7)

Table 24 specifies the AddressSpace representation for the CloseAndUpdate Method.

Table 24 – CloseAndUpdate Method AddressSpace Definition

Attribute Value

BrowseName 0:CloseAndUpdate

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.8.2.4 AddCertificate

The AddCertificate Method allows a Client to add a single Certificate to the TrustList. The Server
shall verify that the Certificate using the validation process defined in OPC 10000-4. If an
invalid Certificate is found the Server shall return an error and shall not update the TrustList.

This Method will return a validation error if the Certificate is issued by a CA and the Certificate
for the issuer is not in the TrustList.

This Method cannot provide CRLs so issuer Certificates cannot be added with this Method.
Instead, CA Certificates and their CRLs shall be managed with the Write Method on the
containing TrustList Object.

This Method cannot be called if the containing TrustList Object is open.

This Method returns Bad_TransactionPending if a transaction is in progress (see 7.10.7).

This Method returns Bad_NotWritable if the TrustList Object is read only.

OPC 10000-12: Discovery, Global Services 42 1.05.04

For PullManagement, this Method shall be called from an authenticated SecureChannel and
from a Client that has access to the CertificateAuthorityAdmin Role (see 7.2).

For PushManagement, this Method shall be called from an authenticated SecureChannel and
from a Client that has access to the SecurityAdmin Role (see 7.2).

Signature

AddCertificate(

 [in] ByteString certificate

 [in] Boolean isTrustedCertificate

);

Argument Description

certificate The DER encoded Certificate to add.

isTrustedCertificate If TRUE the Certificate is added to the trustedCertificates list.
If FALSE Bad_CertificateInvalid is returned.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_CertificateInvalid The certificate to add is invalid.

Bad_InvalidState The Open Method was called with write access and the CloseAndUpdate
Method has not been called.

Bad_RequestTooLarge The changes would result in a TrustList that exceeds the MaxTrustListSize
for the Server.

Bad_TransactionPending Transaction has started and ApplyChanges or CancelChanges has not
been called.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 25 specifies the AddressSpace representation for the AddCertificate Method.

Table 25 – AddCertificate Method AddressSpace Definition

Attribute Value

BrowseName 0:AddCertificate

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

7.8.2.5 RemoveCertificate

The RemoveCertificate Method allows a Client to remove a single Certificate from the TrustList.
It returns Bad_InvalidArgument if the thumbprint does not match a Certificate in the TrustList.

If the Certificate is a CA Certificate that has CRLs then all CRLs for that CA are removed as
well.

This Method returns Bad_CertificateChainIncomplete if the Certificate is a CA Certificate
needed to validate another Certificate in the TrustList.

This Method returns Bad_TransactionPending if a transaction is in progress (see 7.10.7).

This Method returns Bad_NotWritable if the TrustList Object is read only. For PullManagement,
this Method shall be called from an authenticated SecureChannel and from a Session that has
access to the CertificateAuthorityAdmin Role (see 7.2).

For PushManagement, this Method shall be called from an authenticated SecureChannel and
from a Session that has access to the SecurityAdmin Role (see 7.2).

Signature

1.05.04 43 OPC 10000-12: Discovery, Global Services

RemoveCertificate(

 [in] String thumbprint

 [in] Boolean isTrustedCertificate

);

Argument Description

Thumbprint The CertificateDigest of the Certificate to remove.

isTrustedCertificate If TRUE the Certificate is removed from the Trusted Certificates List.
If FALSE the Certificate is removed from the Issuer Certificates List.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_InvalidArgument The certificate to remove was not found.

Bad_InvalidState The Open Method was called with write access and the
CloseAndUpdate Method has not been called.

Bad_CertificateChainIncomplete The Certificate is needed to validate another Certificate in the TrustList.

Bad_TransactionPending Transaction has started and ApplyChanges or CancelChanges has not
been called.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 26 specifies the AddressSpace representation for the RemoveCertificate Method.

Table 26 – RemoveCertificate Method AddressSpace Definition

Attribute Value

BrowseName 0:RemoveCertificate

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

7.8.2.6 TrustListDataType

This type defines a DataType which stores the TrustList of a Server. Its values are defined in
Table 27.

Table 27 – TrustListDataType Structure

Name Type Description

TrustListDataType Structure Subtype of the Structure DataType defined in OPC 10000-5

specifiedLists UInt32 A bit mask which indicates which lists contain information.
The TrustListMasks enumeration in 7.8.2.7 defines the allowed
values.

trustedCertificates ByteString[] The list of Application and CA Certificates which are trusted.

trustedCrls ByteString[] The CRLs for the Certificates in the trustedCertificates list.

issuerCertificates ByteString[] The list of CA Certificates which are necessary to validate
Certificates.

issuerCrls ByteString[] The CRLs for the CA Certificates in the issuerCertificates list.

Its representation in the AddressSpace is defined in Table 28.

Table 28 – TrustListDataType Definition

Attribute Value

BrowseName 0:TrustListDataType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:Structure DataType defined in OPC 10000-5.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

OPC 10000-12: Discovery, Global Services 44 1.05.04

7.8.2.7 TrustListMasks

This is a DataType that defines the values used for the SpecifiedLists field in the
TrustListDataType. Its values are defined in Table 29.

Table 29 – TrustListMasks Enumeration

Name Value Description

None 0 No fields are provided.

TrustedCertificates 1 The TrustedCertificates are provided.

TrustedCrls 2 The TrustedCrls are provided.

IssuerCertificates 4 The IssuerCertificates are provided.

IssuerCrls 8 The IssuerCrls are provided.

All 15 All fields are provided.

Its representation in the AddressSpace is defined in Table 30.

Table 30 – TrustListMasks Definition

Attribute Value

BrowseName 0:TrustListMasks

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the Enumeration DataType defined in OPC 10000-5.

0:HasProperty Variable 0:EnumValues 0:EnumValueType [] 0:PropertyType

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.2.8 TrustListValidationOptions

This DataType defines flags for TrustListValidationOptions is formally defined in Table 31.

Table 31 – TrustListValidationOptions Values

Value Bit No. Description

SuppressCertificateExpired 0 Ignore errors related to the validity time of the Certificate.

SuppressHostNameInvalid 1 Ignore mismatches between the host name or ApplicationUri.

SuppressRevocationStatusUnknown 2 Ignore errors if the revocation list cannot be found for the
issuer of the Certificate.

SuppressIssuerCertificateExpired 3 Ignore errors if an issuer has an expired Certificate.

SuppressIssuerRevocationStatusUnknown 4 Ignore errors if the revocation list cannot be found for any
issuer of issuer Certificates.

CheckRevocationStatusOnline 5 Check the revocation status online.

CheckRevocationStatusOffline 6 Check the revocation status offline.

If CheckRevocationStatusOnline is set, the Certificate validation process defined in OPC
10000-4 will look for the authorityInformationAccess extension to find an OCSP (RFC 6960)
endpoint which can be used to determine if the Certificate has been revoked.

If the OCSP endpoint is not reachable then the Certificate validation process looks for offline
CRLs if the CheckRevocationStatusOffline bit is set. Otherwise, validation fails.

The revocation status flags only have meaning for issuer Certificates and are used when
validating Certificates issued by that issuer.

The default value for this DataType only has the CheckRevocationStatusOffline bit set.

The TrustListValidationOptions representation in the AddressSpace is defined in Table 32.

1.05.04 45 OPC 10000-12: Discovery, Global Services

Table 32 – TrustListValidationOptions Definition

Attribute Value

BrowseName 0:TrustListValidationOptions

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:UInt32 DataType defined in OPC 10000-5

0:HasProperty Variable 0:OptionSetValues 0:LocalizedText [] 0:PropertyType

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.2.9 TrustListOutOfDateAlarmType

This SystemOffNormalAlarmType is raised by the Server when the UpdateFrequency elapses
and the TrustList has not been updated. This alarm automatically returns to normal when the
TrustList is updated.

Table 33 – TrustListOutOfDateAlarmType definition

Attribute Value

BrowseName 0:TrustListOutOfDateAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemOffNormalAlarmType defined in OPC 10000-9.

0:HasProperty Variable 0:TrustListId 0:NodeId 0:PropertyType Mandatory

0:HasProperty Variable 0:LastUpdateTime 0:UtcTime 0:PropertyType Mandatory

0:HasProperty Variable 0:UpdateFrequency 0:Duration 0:PropertyType Mandatory

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

TrustListId Property specifies the NodeId of the out-of-date TrustList Object.

LastUpdateTime Property specifies when the TrustList was last updated.

UpdateFrequency Property specifies how frequently the TrustList needs to be updated.

7.8.2.10 TrustListUpdateRequestedAuditEventType

This event is raised when a Method that changes the TrustList is called

It is raised when CloseAndUpdate, AddCertificate or RemoveCertificate Method on a
TrustListType Object is called.

Its representation in the AddressSpace is formally defined in Table 34.

Table 34 – TrustListUpdateRequestedAuditEventType Definition

Attribute Value

BrowseName 0:TrustListUpdateRequestedAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the 0:AuditUpdateMethodEventType defined in OPC 10000-5.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

OPC 10000-12: Discovery, Global Services 46 1.05.04

7.8.2.11 TrustListUpdatedAuditEventType

This event is raised when a TrustList is successfully changed.

This is the result of a CloseAndUpdate Method on a TrustListType Object or the result of a
ApplyChanges Method on the ServerConfigurationType Object being called.

It shall also be raised when the AddCertificate or RemoveCertificate Method causes an update
to the TrustList.

Its representation in the AddressSpace is formally defined inTable 35.

Table 35 – TrustListUpdatedAuditEventType Definition

Attribute Value

BrowseName 0:TrustListUpdatedAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the 0:AuditUpdateMethodEventType defined in OPC 10000-5.

0:HasProperty Variable 0:TrustListId 0:NodeId 0:PropertyType Mandatory

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

The TrustListId Property is the NodeId of the TrustList Object that was changed.

7.8.3 CertificateGroups

7.8.3.1 CertificateGroupType

This ObjectType is used for Objects which represent CertificateGroups in the AddressSpace. A
CertificateGroup is a context that contains a TrustList and one or more CertificateTypes that
can be assigned to an Application. This ObjectType allows an Application which has multiple
TrustLists and/or ApplicationInstance Certificates to express them in its AddressSpace.

A CertificateManager can have many CertificateGroups which manage CertificateTypes and
TrustLists for the applications in the system.

A Server has one or more CertificateGroups which specify the CertificateTypes and TrustLists
managed by the Server. Typically, there is a mapping between a CertificateGroup in a Server
and a CertificateGroup in the CertificateManager. The mechanisms for creating that mapping
are outside the scope of this specification.

This type is defined in Table 36.

Table 36 – CertificateGroupType Definition

Attribute Value

BrowseName 0:CertificateGroupType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasComponent Object 0:TrustList 0:TrustListType Mandatory

0:HasProperty Variable 0:CertificateTypes 0:NodeId[] 0:PropertyType Mandatory

0:HasComponent Object 0:CertificateExpired 0:CertificateExpiratio
nAlarmType

Optional

0:HasCondition ObjectType 0:CertificateExpiration
AlarmType

0:HasComponent Object 0:TrustListOutOfDate 0:TrustListOutOfDate
AlarmType

Optional

0:HasComponent Method 0:GetRejectedList Defined in 7.8.3.2. Optional

Conformance Units

1.05.04 47 OPC 10000-12: Discovery, Global Services

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

The TrustList Object is the TrustList associated with the CertificateGroup.

The CertificateTypes Property specifies the NodeIds of the CertificateTypes which may be
assigned to Applications which belong to the CertificateGroup. For example, a CertificateGroup
with the NodeId of RsaMinApplicationCertificateType (see 7.8.4.4) and the NodeId
RsaSha256ApplicationCertificate (see 7.8.4.5) specified allows an Application to have one
Application Instance Certificates for each type. Abstract base types may be used in this value
and indicate that any subtype is allowed. If this list is empty then the CertificateGroup does not
allow Certificates to be assigned to Applications (i.e. a UserToken CertificateGroup only exists
to allow the associated TrustList to be read or updated). All CertificateTypes for a given
CertificateGroup shall be subtypes of a single common type which shall be either
ApplicationCertificateType or HttpsCertificateType.

The CertificateExpired Object is an Alarm which is raised when a Certificate associated with
the CertificateGroup is about to expire. If multiple Certificates are about to expiry an Alarm for
each Certificate is raised. The CertificateExpirationAlarmType is defined in OPC 10000-9.

The TrustListOutOfDate Object is an Alarm which is raised when the TrustList has not been
updated within the period specified by the UpdateFrequency (see 7.8.2.1). The
TrustListOutOfDateAlarmType is defined in 7.8.2.9.

The GetRejectedList Method returns the list of Certificates that have been rejected by the
Server when using the TrustList associated with the CertificateGroup. It can be used to track
activity or allow administrators to move a rejected Certificate into the TrustList. This Method
shall only be present on CertificateGroups which are part of the ServerConfiguration Object
defined in 7.10.3.

7.8.3.2 GetRejectedList

GetRejectedList Method returns the list of Certificates that have been rejected by the Server.

No rules are defined for how the Server updates this list or how long a Certificate is kept in the
list. It is recommended that every valid but untrusted Certificate be added to the rejected list as
long as storage is available. Servers can delete entries from the list returned if the maximum
message size is not large enough to allow the entire list to be returned.

Servers only add Certificates to this list that have no unsuppressed validation errors but are not
trusted.

For PullManagement, this Method is not present on the CertificateGroup.

For PushManagement, this Method shall be called from an authenticated SecureChannel and
from a Client that has access to the SecurityAdmin Role (see 7.2).

Signature

GetRejectedList(

 [out] ByteString[] certificates

);

Argument Description

certificates The DER encoded form of the Certificates rejected by the Server.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 37 specifies the AddressSpace representation for the GetRejectedList Method.

OPC 10000-12: Discovery, Global Services 48 1.05.04

Table 37 – GetRejectedList Method AddressSpace Definition

Attribute Value

BrowseName 0:GetRejectedList

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.8.3.3 CertificateGroupFolderType

This type is used for Folders which organize Certificate Groups in the AddressSpace. This type
is defined in Table 38.

Table 38 – CertificateGroupFolderType Definition

Attribute Value

BrowseName 0:CertificateGroupFolderType

IsAbstract False

References Node
Class

BrowseName Data
Type

TypeDefinition Modelling Rule

Subtype of the FolderType defined in OPC 10000-5.

0:HasComponent Object 0:DefaultApplicationGroup 0:CertificateGroupType Mandatory

0:HasComponent Object 0:DefaultHttpsGroup 0:CertificateGroupType Optional

0:HasComponent Object 0:DefaultUserTokenGroup 0:CertificateGroupType Optional

0:Organizes Object 0:<AdditionalGroup> 0:CertificateGroupType Optional
Placeholder

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

The DefaultApplicationGroup Object represents the default CertificateGroup for Applications. It
is used to access the default Application TrustList and to define the CertificateTypes allowed
for the ApplicationInstanceCertificate . This Object shall specify the ApplicationCertificateType
NodeId (see 7.8.4.2) as a single entry in the CertificateTypes list or it shall specify one or more
subtypes of ApplicationCertificateType.

The DefaultHttpsGroup Object represents the default CertificateGroup for HTTPS
communication. It is used to access the default HTTPS TrustList and to define the
CertificateTypes allowed for the HTTPS Certificate. This Object shall specify the
HttpsCertificateType NodeId (see 7.8.4.3) as a single entry in the CertificateTypes list or it shall
specify one or more subtypes of HttpsCertificateType.

This DefaultUserTokenGroup Object represents the default CertificateGroup for validating user
credentials. It is used to access the default user credential TrustList and to define the
CertificateTypes allowed for user credentials Certificate. This Object shall leave
CertificateTypes list empty.

Any additional CertificateGroups shall have a BrowseName where the Name is unique within
the CertificateGroupFolder.

7.8.4 CertificateTypes

7.8.4.1 CertificateType

This type is an abstract base type for types that describe the purpose of a Certificate. This type
is defined in Table 39.

Table 39 – CertificateType Definition

Attribute Value

BrowseName 0:CertificateType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the 0:BaseObjectType defined in OPC 10000-5.

0:HasSubtype ObjectType 0:ApplicationCertificateType Defined in 7.8.4.2.

1.05.04 49 OPC 10000-12: Discovery, Global Services

0:HasSubtype ObjectType 0:HttpsCertificateType Defined in 7.8.4.3.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.2 ApplicationCertificateType

This type is an abstract base type for types that describe the purpose of an
ApplicationInstanceCertificate. This type is defined in Table 40.

Table 40 – ApplicationCertificateType Definition

Attribute Value

BrowseName 0:ApplicationCertificateType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the CertificateType defined in 7.8.4.

0:HasSubtype ObjectType 0:RsaMinApplicationCertificateType Defined in 7.8.4.4.

0:HasSubtype ObjectType 0:RsaSha256ApplicationCertificateType Defined in 7.8.4.5.

0:HasSubtype ObjectType 0:EccApplicationCertificateType Defined in 7.8.4.6.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.3 HttpsCertificateType

This type is used to describe Certificates that are intended for use as HTTPS Certificates. This
type is defined in Table 41.

Table 41 – HttpsCertificateType Definition

Attribute Value

BrowseName 0:HttpsCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:CertificateType defined in 7.8.4.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.4 RsaMinApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an RSA key size of 1024 or 2048 bits. All Applications which support the
Basic128Rsa15 and Basic256 profiles (see OPC 10000-7) shall have a Certificate of this type.
This type is defined in Table 42.

Table 42 – RsaMinApplicationCertificateType Definition

Attribute Value

BrowseName 0:RsaMinApplicationCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:ApplicationCertificateType defined in 7.8.4.2

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.5 RsaSha256ApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an RSA key size of 2048, 3072 or 4096 bits. All Applications which support the
Basic256Sha256 profile (see OPC 10000-7) shall have a Certificate of this type. This type is
defined in Table 43.

OPC 10000-12: Discovery, Global Services 50 1.05.04

Table 43 – RsaSha256ApplicationCertificateType Definition

Attribute Value

BrowseName 0:RsaSha256ApplicationCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:ApplicationCertificateType defined in 7.8.4.2

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.6 EccApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an ECC Public Key. Applications which support the ECC profiles (see OPC
10000-7) shall have a Certificate of this type. This type is defined in Table 44.

Table 44 – EccApplicationCertificateType Definition

Attribute Value

BrowseName 0:EccApplicationCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:ApplicationCertificateType defined in 7.8.4.2.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.7 EccNistP256ApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an ECC nistP256 Public Key. Applications which support the ECC NIST P256
curve profiles (see OPC 10000-7) shall have a Certificate of this type or a Certificate of the
EccNistP384ApplicationCertificateType defined in 7.8.4.8. This type is defined in Table 45.

Table 45 – EccNistP256ApplicationCertificateType Definition

Attribute Value

BrowseName 0:EccNistP256ApplicationCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:EccApplicationCertificateType defined in 7.8.4.6.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.8 EccNistP384ApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an ECC nistP384 Public Key. Applications which support the ECC NIST P384
curve profiles (see OPC 10000-7) shall have a Certificate of this type. This type is defined in
Table 46.

Table 46 – EccNistP384ApplicationCertificateType Definition

Attribute Value

BrowseName 0:EccNistP384ApplicationCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:EccApplicationCertificateType defined in 7.8.4.6.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

1.05.04 51 OPC 10000-12: Discovery, Global Services

7.8.4.9 EccBrainpoolP256r1ApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an ECC brainpoolP256r1 Public Key. Applications which support the ECC
brainpoolP256r1 curve profiles (see OPC 10000-7) shall have a Certificate of this type or a
Certificate of the EccBrainpoolP384r1ApplicationCertificateType defined in 7.8.4.10. This type
is defined in Table 47.

Table 47 – EccBrainpoolP256r1ApplicationCertificateType Definition

Attribute Value

BrowseName 0:EccBrainpoolP256r1ApplicationCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:EccApplicationCertificateType defined in 7.8.4.6.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.10 EccBrainpoolP384r1ApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an ECC brainpoolP384r1 Public Key. Applications which support the ECC
brainpoolP384r1 curve profiles (see OPC 10000-7) shall have a Certificate of this type. This
type is defined in Table 48.

Table 48 – EccBrainpoolP384r1ApplicationCertificateType Definition

Attribute Value

BrowseName 0:EccBrainpoolP384r1ApplicationCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:EccApplicationCertificateType defined in 7.8.4.6.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.11 EccCurve25519ApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an ECC curve25519 Public Key. Applications which support the ECC
curve25519 curve profiles (see OPC 10000-7) shall have a Certificate of this type. This type is
defined in Table 49.

Table 49 – EccCurve25519ApplicationCertificateType Definition

Attribute Value

BrowseName 0:EccCurve25519ApplicationCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:EccApplicationCertificateType defined in 7.8.4.6.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.8.4.12 EccCurve448ApplicationCertificateType

This type is used to describe Certificates intended for use as an ApplicationInstanceCertificate .
They shall have an ECC curve448 Public Key. Applications which support the ECC curve448
curve profiles (see OPC 10000-7) shall have a Certificate of this type. This type is defined in
Table 50.

Table 50 – EccCurve448ApplicationCertificateType Definition

Attribute Value

OPC 10000-12: Discovery, Global Services 52 1.05.04

BrowseName 0:EccCurve448ApplicationCertificateType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:EccApplicationCertificateType defined in 7.8.4.6.

Conformance Units

GDS Certificate Manager Pull Model

Push Model for Global Certificate and TrustList Management

7.9 Information Model for Pull Certificate Management

7.9.1 Overview

The GlobalDiscoveryServer AddressSpace used for Certificate management is shown in Figure
20. Most of the interactions between the GlobalDiscoveryServer and Application administrator
or the Client will be via Methods defined on the Directory folder.

Certificate

DirectoryType:

Directory

CertificateGroup

FolderType:

CertificateGroups

StartSigning

Request

StartNewKey

PairRequest

FinishRequest

GetCertificate

Groups

GetCertificate

Status

GetTrustList

CertificateGroupType:

DefaultApplicationGroup

CertificateGroupType:

DefaultHttpsGroup

CertificateGroupType:

DefaultUser

TokenGroup

Revoke

Certificate

GetCertificates

Check

RevocationStatus

Figure 20 – The Certificate Management AddressSpace for the GlobalDiscoveryServer

7.9.2 CertificateDirectoryType

This ObjectType is the TypeDefinition for the root of the CertificateManager AddressSpace. It
provides additional Methods for Certificate management which are shown in Table 51.

1.05.04 53 OPC 10000-12: Discovery, Global Services

Table 51 – CertificateDirectoryType ObjectType Definition

Attribute Value

BrowseName 2:CertificateDirectoryType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the 2:DirectoryType defined in 6.6.3.

0:Organizes Object 2:CertificateGroups 0:CertificateGroup
FolderType

Mandatory

0:HasComponent Method 2:StartSigningRequest Defined in 7.9.3. Mandatory

0:HasComponent Method 2:StartNewKeyPairRequest Defined in 7.9.4. Mandatory

0:HasComponent Method 2:FinishRequest Defined in 7.9.5. Mandatory

0:HasComponent Method 2:RevokeCertificate Defined in 7.9.6. Optional

0:HasComponent Method 2:GetCertificateGroups Defined in 7.9.7. Mandatory

0:HasComponent Method 2:GetCertificates Defined in 7.9.8. Optional

0:HasComponent Method 2:GetTrustList Defined in 7.9.9. Mandatory

0:HasComponent Method 2:GetCertificateStatus Defined in 7.9.10. Mandatory

0:HasComponent Method 2:CheckRevocationStatus Defined in 7.9.11. Optional

Conformance Units

GDS Certificate Manager Pull Model

The CertificateGroups Object organizes the CertificateGroups supported by the
CertificateManager. It is described in 7.8.4.6. CertificateManagers shall support the
DefaultApplicationGroup and may support the DefaultHttpsGroup or the
DefaultUserTokenGroup. CertificateManagers may support additional CertificateGroups
depending on their requirements. For example, a CertificateManager with multiple Certificate
Authorities would represent each as a CertificateGroupType Object organized by
CertificateGroups Folder. Clients could then request Certificates issued by a specific CA by
passing the appropriate NodeId to the StartSigningRequest or StartNewKeyPairRequest
Methods.

CertificateGroups assigned by the CertificateManager to specific applications are persisted by
PullManagement Clients. These Clients use the NodeIds to relate their local configuration to
the CertificateGroup in the CertificateManager.

The StartSigningRequest Method is used to request a new a Certificate that is signed by a CA
managed by the CertificateManager. This Method is recommended when the caller already has
a private key.

The StartNewKeyPairRequest Method is used to request a new Certificate that is signed by a
CA managed by the CertificateManager along with a new private key. This Method is used only
when the caller does not have a private key and cannot generate one.

The FinishRequest Method is used to check that a Certificate request has been approved by an
entity with access to the RegistrationAuthorityAdmin Role. If successful the Certificate and
Private Key (if requested) are returned.

The GetCertificateGroups Method returns a list of NodeIds for CertificateGroupType Objects
that can be used to request Certificates or TrustLists for an Application.

The GetCertificates Method returns a list of Certificates assigned to the Application for a
CertificateGroup.

The GetTrustList Method returns a NodeId of a TrustListType Object that belongs to a
CertificateGroup assigned to an Application.

The GetCertificateStatus Method checks whether the Application needs to update the
Certificate identified in the call.

The CheckRevocationStatus Method checks the revocation status of a Certificate.

OPC 10000-12: Discovery, Global Services 54 1.05.04

7.9.3 StartSigningRequest

StartSigningRequest is used to initiate a request to create a Certificate which uses the private
key which the caller currently has. The new Certificate is returned in the FinishRequest
response.

Signature

StartSigningRequest(

 [in] NodeId applicationId

 [in] NodeId certificateGroupId

 [in] NodeId certificateTypeId

 [in] ByteString certificateRequest

 [out] NodeId requestId

);

Argument Description

applicationId The identifier assigned to the Application record by the CertificateManager.

certificateGroupId The NodeId of the CertificateGroup which provides the context for the new
request.
If null the CertificateManager shall choose the DefaultApplicationGroup.

certificateTypeId The NodeId of the CertificateType for the new Certificate.
If null the CertificateManager shall generate a Certificate based on the value
of the certificateGroupId argument.

certificateRequest A CertificateRequest used to prove possession of the Private Key.
It is a PKCS #10 encoded blob in DER format.
If the CertificateRequest is for an ApplicationInstance Certificate then it shall
include all fields required by OPC 10000-6 such as the subjectAltName.

requestId The NodeId that represents the request.
This value is passed to FinishRequest.

The call returns the NodeId that is passed to the FinishRequest Method.

The certificateGroupId parameter allows the caller to specify a CertificateGroup that provides
context for the request. If null the CertificateManager shall choose the DefaultApplicationGroup.
If the Application does not currently belong to the requested CertificateGroup the
CertificateManager shall verify that the Application is allowed to join the CertificateGroup and
then, if permitted, add the Application to the CertificateGroup.The CertificateGroup verification
and assignment may occur anytime before FinishRequest returns success.

The set of available CertificateGroups are found in the CertificateGroups folder described in
7.9.2. The CertificateGroups allowed for an Application are returned by the
GetCertificateGroups Method (see 7.9.7).

The certificateTypeId parameter specifies the type of Certificate to return. The permitted values
are specified by the CertificateTypes Property of the Object specified by the certificateGroupId
parameter.

The certificateRequest parameter is a DER encoded CertificateRequest. The subject,
subjectAltName and Public Key are copied into the new Certificate.

If the certificateTypeId is a subtype of ApplicationCertificateType the subject conforms to the
requirements defined in OPC 10000-6. The public key length shall meet the length restrictions
for the CertificateType. If the certificateType is a subtype of HttpsCertificateType the Certificate
common name (CN=) shall be the same as a domain from a DiscoveryUrl which uses HTTPS
and the subject shall have an organization (O=) field.

The ApplicationUri shall be specified in the CSR. The CertificateManager shall return
Bad_CertificateUriInvalid if the stored ApplicationUri for the Application is different from what
is in the CSR.

The subject in the CSR may be ignored by the CertificateManager. The CertificateManager may
update the subject to comply with policy requirements and to ensure global uniqueness.

Any bits set in basicConstraints or extendedKeyUsage fields in the CSR are ignored by the
CertificateManager. The CertificateManager uses values that are appropriate and compl iant
with requirements defined for Application Instance Certificates in OPC 10000-6.

For Servers, the list of domain names shall be specified in the CSR. The domains shall include
the domain(s) in the DiscoveryUrls known to the CertificateManager.

1.05.04 55 OPC 10000-12: Discovery, Global Services

This Method shall be called from an encrypted SecureChannel and from a Session that has
access to the CertificateAuthorityAdmin Role, the ApplicationAdmin Privilege, or the
ApplicationSelfAdmin Privilege (see 7.2).

If auditing is supported, the CertificateManager shall generate the CertificateRequested
AuditEventType (see 7.9.12) if this Method succeeds or fails.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument One or more of the certificateGroupId, certificateTypeId or
certificateRequest arguments is not valid.
The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_RequestNotAllowed The current configuration of the CertificateManager does not allow the
request.
The text associated with the error should indicate the exact reason.

Bad_CertificateUriInvalid The ApplicationUri was not specified in the CSR or does not match the
Application record.

Bad_NotSupported The signing algorithm, public algorithm or public key size are not
supported by the CertificateManager. The text associated with the error
shall indicate the exact problem.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 52 specifies the AddressSpace representation for the StartSigningRequest Method.

Table 52 – StartSigningRequest Method AddressSpace Definition

Attribute Value

BrowseName 2:StartSigningRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.9.4 StartNewKeyPairRequest

This Method is used to start a request for a new Certificate and Private Key. The Certificate
and Private Key. are returned in the FinishRequest response.

Signature

StartNewKeyPairRequest(

 [in] NodeId applicationId

 [in] NodeId certificateGroupId

 [in] NodeId certificateTypeId

 [in] String subjectName

 [in] String[] domainNames

 [in] String privateKeyFormat

 [in] String privateKeyPassword

 [out] NodeId requestId

);

Argument Description

applicationId The identifier assigned to the Application Instance by the CertificateManager.

certificateGroupId The NodeId of the CertificateGroup which provides the context for the new
request.
If null the CertificateManager shall choose the DefaultApplicationGroup.

certificateTypeId The NodeId of the CertificateType for the new Certificate.
If null the CertificateManager shall generate a Certificate based on the value of
the certificateGroupId argument.

subjectName The subject to use for the Certificate.
If not specified the ApplicationName and/or domainNames are used to create a
suitable default value.
The format of the subject is a sequence of name value pairs separated by a ‘/’.
The name shall be one of ‘CN’, ‘O’, ‘OU’, ‘DC’, ‘L’, ‘S’ or ‘C’ and shall be followed
by a ‘=’ and then followed by the value. The value may be any printable character
except for ‘”’. If the value contains a ‘/’ or a ‘=’ then it shall be enclosed in double
quotes (‘”’).

OPC 10000-12: Discovery, Global Services 56 1.05.04

domainNames The domain names to include in the Certificate.
If not specified the DiscoveryUrls are used to create suitable defaults.

privateKeyFormat The format of the private key.
The following values are always supported:
 PFX - PKCS #12 encoded
 PEM - PKCS #8 Base64 encoded DER (see RFC 5958).

privateKeyPassword The password to use for the private key.

requestId The NodeId that represents the request.
This value is passed to FinishRequest.

The call returns the NodeId that is passed to the FinishRequest Method.

The certificateGroupId parameter allows the caller to specify a CertificateGroup that provides
context for the request. If null the CertificateManager shall choose the DefaultApplicationGroup.
If the Application does not currently belong to the requested CertificateGroup the
CertificateManager shall verify that the Application is allowed to join the CertificateGroup and
then, if permitted, add the Application to the CertificateGroup.

The set of available CertificateGroups are found in the CertificateGroups folder described in
7.9.2. The CertificateGroups allowed for an Application are returned by the
GetCertificateGroups Method (see 7.9.7).

The certificateTypeId parameter specifies the type of Certificate to return. The permitted values
are specified by the CertificateTypes Property of the Object specified by the certificateGroupId
parameter.

The subjectName parameter is a sequence of X.500 name value pairs separated by a ‘/’. For
example: CN=ApplicationName/OU=Group/O=Company.

If the certificateType is a subtype of ApplicationCertificateType the Certificate subject shall
have an organization (O=) or domain name (DC=) field. The public key length shall meet the
length restrictions for the CertificateType. The domain name field specified in the subject is a
logical domain used to qualify the subject that may or may not be the same as a domain or IP
address in the subjectAltName field of the Certificate.

If the certificateType is a subtype of HttpsCertificateType the Certificate common name (CN=)
shall be the same as a domain from a DiscoveryUrl which uses HTTPS and the subject shall
have an organization (O=) field.

If the subjectName is blank or null the CertificateManager generates a suitable default.

The requested subject may be ignored by the CertificateManager. The CertificateManager may
update the subject to comply with policy requirements and to ensure global uniqueness.

The domainNames parameter is list of domains to be includes in the Certificate. If it is null or
empty the GDS uses the DiscoveryUrls of the Server to create a list. For Clients the
domainNames are omitted from the Certificate if they are not explicitly provided.

The privateKeyFormat specifies the format of the private key returned. All CertificateManager
implementations shall support “PEM” and “PFX”.

The privateKeyPassword specifies the password on the private key. The CertificateManager
shall not persist this information and shall discard it once the new private key is generated.

This Method shall be called from an encrypted SecureChannel and from a Session that has
access to the CertificateAuthorityAdmin Role, the ApplicationAdmin Privilege, or the
ApplicationSelfAdmin Privilege (see 7.2).

If auditing is supported, the CertificateManager shall generate the CertificateRequested
AuditEventType (see 7.9.12) if this Method succeeds or fails.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NodeIdUnknown The applicationId does not refer to a registered Application (deprecated).

1.05.04 57 OPC 10000-12: Discovery, Global Services

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument One or more of the certificateGroupId, certificateTypeId, subjectName,
domainNames or privateKeyFormat parameters is not valid.
The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_RequestNotAllowed The current configuration of the CertificateManager does not allow the
request.
The text associated with the error should indicate the exact reason.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 53 specifies the AddressSpace representation for the StartNewKeyPairRequest Method.

Table 53 – StartNewKeyPairRequest Method AddressSpace Definition

Attribute Value

BrowseName 2:StartNewKeyPairRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.9.5 FinishRequest

FinishRequest is used to finish a certificate request started with a call to
StartNewKeyPairRequest or StartSigningRequest.

Signature

FinishRequest (

 [in] NodeId applicationId

 [in] NodeId requestId

 [out] ByteString certificate

 [out] ByteString privateKey

 [out] ByteString[] issuerCertificates

);

Argument Description

applicationId The identifier assigned to the Application Instance by the GDS.

requestId The NodeId returned by StartNewKeyPairRequest or StartSigningRequest.

certificate The DER encoded Certificate.

privateKey The private key encoded in the format requested.
If a password was supplied the blob is protected with it.
This field is null if no private key was requested.

issuerCertificates The Certificates required to validate the new Certificate.

This call is passes the NodeId returned by a previous call to StartNewKeyPairRequest or
StartSigningRequest.

It is expected that a Client will periodically call this Method until an entity with access to the
RegistrationAuthorityAdmin Role has approved the request.

If the Client experiences a network failure while waiting for a completed request it may receive
a Bad_InvalidArgument error when it calls the Method again. Recovering from this error is done
by:

• If the Client originally called StartSigningRequest it can retrieve the Certificate by calling
GetCertificates (see 7.9.8).

• If the Client originally called StartNewKeyPairRequest it shall restart the process by
calling StartNewKeyPairRequest again.

This Method shall be called from an encrypted SecureChannel and from a Session that has
access to the CertificateAuthorityAdmin Role, the ApplicationAdmin Privilege, or the
ApplicationSelfAdmin Privilege (see 7.2). In addition, the Client Certificate shall be the same
as the one used to call StartSigningRequest or StartNewKeyPairRequest.

OPC 10000-12: Discovery, Global Services 58 1.05.04

If auditing is supported, the CertificateManager shall generate the
CertificateDeliveredAuditEventType (see 7.9.13) if this Method succeeds or if it fails with
anything but Bad_NothingToDo.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument The requestId is does not reference to a valid request for the Application.

Bad_NothingToDo There is nothing to do because request has not yet completed.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_RequestNotAllowed The CertificateManager rejected the request.
The text associated with the error should indicate the exact reason.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 54 specifies the AddressSpace representation for the FinishRequest Method.

Table 54 – FinishRequest Method AddressSpace Definition

Attribute Value

BrowseName 2:FinishRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.9.6 RevokeCertificate

RevokeCertificate is used to revoke a Certificate issued by the CertificateManager.

When a Certificate is revoked it shall be removed from any TrustLists that it is in and TrustLists
with the issuer Certificate shall be updated with the new CRL.

Certificates assigned to an Application are automatically revoked when the
UnregisterApplication Method is called (see 6.6.8).

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the CertificateAuthorityAdmin Role (see 7.2).

Signature

RevokeCertificate (

 [in] NodeId applicationId

 [in] ByteString certificate

);

Argument Description

applicationId The identifier assigned to the Application by the CertificateManager.

certificate The DER encoded Certificate to revoke.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument The certificate is not a Certificate for the specified Application that was issued
by the CertificateManager.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 55 specifies the AddressSpace representation for the RevokeCertificate Method.

Table 55 – RevokeCertificate Method AddressSpace Definition

Attribute Value

BrowseName 2:RevokeCertificate

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

1.05.04 59 OPC 10000-12: Discovery, Global Services

7.9.7 GetCertificateGroups

GetCertificateGroups returns the CertificateGroups assigned to Application.

Signature

GetCertificateGroups(

 [in] NodeId applicationId

 [out] NodeId[] certificateGroupIds

);

Argument Description

applicationId The identifier assigned to the Application by the GDS.

certificateGroupIds An identifier for the CertificateGroups assigned to the Application.

A CertificateGroup provides a TrustList and one or more CertificateTypes which may be
assigned to an Application.

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the CertificateAuthorityAdmin Role, the ApplicationAdmin Privilege, or the
ApplicationSelfAdmin Privilege (see 7.2).

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 58 specifies the AddressSpace representation for the GetCertificateGroups Method.

Table 56 – GetCertificateGroups Method AddressSpace Definition

Attribute Value

BrowseName 2:GetCertificateGroups

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.9.8 GetCertificates

GetCertificates returns the Certificates assigned to Application and associated with the
CertificateGroup.

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the CertificateAuthorityAdmin Role, the ApplicationAdmin Privilege, or the
ApplicationSelfAdmin Privilege (see 7.2).

Signature

GetCertificates(

 [in] NodeId applicationId

 [in] NodeId certificateGroupId

 [out] NodeId[] certificateTypeIds

 [out] ByteString[] certificates

);

Argument Description

applicationId The identifier assigned to the Application by the GDS.

certificateGroupId An identifier for the CertificateGroup that the Certificates belong to.
If null, the CertificateManager shall return the Certificates for all CertificateGroups
assigned to the Application.

certificateTypeIds The CertificateTypes that currently have a Certificate assigned.
The length of this list is the same as the length as certificates list.

certificates A list of DER encoded Certificates assigned to Application.
This list only includes Certificates that are currently valid.

Method Result Codes (defined in Call Service)

OPC 10000-12: Discovery, Global Services 60 1.05.04

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument The certificateGroupId is not recognized or not valid for the Application.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 57 specifies the AddressSpace representation for the GetCertificates Method.

Table 57 – GetCertificates Method AddressSpace Definition

Attribute Value

BrowseName 2:GetCertificates

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.9.9 GetTrustList

GetTrustList is used to retrieve the NodeId of a TrustList assigned to an Application.

Signature

GetTrustList(

 [in] NodeId applicationId

 [in] NodeId certificateGroupId

 [out] NodeId trustListId

);

Argument Description

applicationId The identifier assigned to the Application by the GDS.

certificateGroupId An identifier for a CertificateGroup that the Application belongs to.
If null, the CertificateManager shall return the trustListId for a suitable
default group for the Application.

trustListId The NodeId for a TrustList Object that can be used to download the
TrustList assigned to the Application.

Access permissions also apply to the TrustList Objects which are returned by this Method. This
TrustList includes any Certificate Revocation Lists (CRLs) associated with issuer Certificates
in the TrustList.

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the CertificateAuthorityAdmin Role, the ApplicationAdmin Privilege, or the
ApplicationSelfAdmin Privilege (see 7.2).

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument The certificateGroupId parameter is not valid.
The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 58 specifies the AddressSpace representation for the GetTrustList Method.

Table 58 – GetTrustList Method AddressSpace Definition

Attribute Value

BrowseName 2:GetTrustList

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.9.10 GetCertificateStatus

GetCertificateStatus is used to check if an Application needs to update its Certificate.

1.05.04 61 OPC 10000-12: Discovery, Global Services

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the CertificateAuthorityAdmin Role, the ApplicationAdmin Privilege, or the
ApplicationSelfAdmin Privilege (see 7.2).

Signature

GetCertificateStatus(

 [in] NodeId applicationId

 [in] NodeId certificateGroupId

 [in] NodeId certificateTypeId

 [out] Boolean updateRequired

);

Argument Description

applicationId The identifier assigned to the Application Instance by the GDS.

certificateGroupId The NodeId of the CertificateGroup which provides the context.
If null the CertificateManager shall choose the DefaultApplicationGroup.

certificateTypeId The NodeId of the CertificateType for the Certificate.
If null the CertificateManager shall select a Certificate based on the value
of the certificateGroupId argument.

updateRequired TRUE if the Application needs to request a new Certificate from the GDS.
FALSE if the Application can keep using the existing Certificate.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationId does not refer to a registered Application.

Bad_InvalidArgument The certificateGroupId or certificateTypeId parameter is not valid.
The text associated with the error shall indicate the exact problem.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 59 specifies the AddressSpace representation for the GetCertificateStatus Method.

Table 59 – GetCertificateStatus Method AddressSpace Definition

Attribute Value

BrowseName 2:GetCertificateStatus

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.9.11 CheckRevocationStatus

CheckRevocationStatus Method is used to check the revocation status of an Certificate.

Clients or Servers may use this Method if the issuer Certificate has a crlDistributionPoint
extension, an authorityInformationAccess extension (see RFC 6960) or the TrustList is
configured to require online Certificate revocation checks (see 7.8.2.1).

The CertificateManager will typically use a protocol such as OCSP (see RFC 6960) to verify the
Certificate status using the endpoint in the CDP extension, however, it may also optimize
performance by maintaining a cache of recently verified Certificate and/or maintaining it’s own
offline CRLs. The validityTime parameter provides guidance on how long a result can be kept
in a local cache.

The caller shall perform all validation checks other than the revocation status check (see OPC
10000-4) on the Certificate before calling this Method. The CertificateManager shall check the
Signature on the Certificate and may do additional validation.

This Method shall be called from an authenticated SecureChannel.

Signature

CheckRevocationStatus (

 [in] ByteString certificate

OPC 10000-12: Discovery, Global Services 62 1.05.04

 [out] StatusCode certificateStatus

 [out] UtcTime validityTime

);

Argument Description

INPUTS

certificate The DER encoded form of the Certificate to check.

OUTPUTS

certificateStatus The first error encountered when validating the Certificate.

validityTime When the result expires and should be rechecked.
DateTime.MinValue is this is unknown.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 60 specifies the AddressSpace representation for the CheckRevocationStatus Method.

Table 60 – CheckRevocationStatus Method AddressSpace Definition

Attribute Value

BrowseName 2:CheckRevocationStatus

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.9.12 CertificateRequestedAuditEventType

This event is raised when a new certificate request has been accepted or rejected by the
CertificateManager.

This can be the result of a StartNewKeyPairRequest or StartSigningRequest Method calls.

 Its representation in the AddressSpace is formally defined in Table 61.

Table 61 – CertificateRequestedAuditEventType Definition

Attribute Value

BrowseName 2:CertificateRequestedAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:AuditUpdateMethodEventType defined in OPC 10000-5.

0:HasProperty Variable 2:CertificateGroup 0:NodeId 0:PropertyType Mandatory

0:HasProperty Variable 2:CertificateType 0:NodeId 0:PropertyType Mandatory

Conformance Units

GDS Certificate Manager Pull Model

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

The CertificateGroup Property specifies the CertificateGroup that was affected by the update.

The CertificateType Property specifies the type of Certificate that was updated.

7.9.13 CertificateDeliveredAuditEventType

This event is raised when a certificate is delivered by the CertificateManager to a Client.

This is the result of a FinishRequest Method completing successfully.

1.05.04 63 OPC 10000-12: Discovery, Global Services

Its representation in the AddressSpace is formally defined in Table 62.

Table 62 – CertificateDeliveredAuditEventType Definition

Attribute Value

BrowseName 2:CertificateDeliveredAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:AuditUpdateMethodEventType defined in OPC 10000-5.

0:HasProperty Variable 2:CertificateGroup 0:NodeId 0:PropertyType Mandatory

0:HasProperty Variable 2:CertificateType 0:NodeId 0:PropertyType Mandatory

Conformance Units

GDS Certificate Manager Pull Model

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

The CertificateGroup Property specifies the CertificateGroup that was affected by the update.

The CertificateType Property specifies the type of Certificate that was updated.

7.10 Information Model for Push Certificate Management

7.10.1 Overview

If a Server supports PushManagement it is required to support an information model as part of
its AddressSpace. It shall support the ServerConfiguration Object shown in Figure 21.

ServerType:

Server

Server

ConfigurationType:

ServerConfiguration

Apply

Changes

Update

Certificate

Create

SigningRequest

GetRejectedList

CertificateGroupType:

DefaultApplicationGroup

CertificateGroupType:

DefaultHttpsGroup

CertificateGroupType:

DefaultUserTokenGroup

CertificateGroup

FolderType:

CertificateGroups
Cancel

Changes

Application

ConfigurationFileType

ConfigurationFile

FolderType

Resources

Application

ConfigurationFolderType:

ManagedApplications

Application

ConfigurationType:

Client1

Application

ConfigurationType:

Server2

Figure 21 – The AddressSpace for the Server that supports Push Management

The ServerConfiguration Object is used to manage the Server. The ManagedApplications
Folder collects ApplicationConfiguration Objects for other applications which the Server is able
to manage. For example, a Server may have associated Client applications that do not support
PushManagement so the Server can become a proxy for these Clients.

7.10.2 Transaction Lifecycle

The CertificateGroups and TrustLists used by a Server may be updated as part of a transaction
where multiple Methods are invoked, however, no changes will have any effect until
ApplyChanges is called (see 7.10.7). These transactions are created automatically and the
Server returns applyChangesRequired =TRUE in a Method response to tell the Client that a
transaction is active. Servers that do not support transactions return applyChangesRequired
=FALSE and apply any changes before returning a Method response.

OPC 10000-12: Discovery, Global Services 64 1.05.04

If a Method called within a transaction fails (e.g. a parameter was invalid) the transaction state
shall not change and all previous changes are applied when ApplyChanges is called.

Once a transaction is created, a Server shall queue the changes in the order that they were
requested within the current Session. When ApplyChanges is called the Server verifies that all
the changes are consistent and can be applied without errors. If any errors are found then all
changes are discarded. If no errors are found, the Server applies all changes.

If errors occur, they are reported in the TransactionDiagnostics Object (see 7.10.12).

The life cycle of a transaction is shown in Figure 22.

Bad_Transaction

Pending

Transaction
On Session?

Create
Transaction

No
Transaction

Exists?
Yes

Yes

Yes

No

Write
Complete?

No

Bad_Transaction

Pending

Transaction
On Session?

No
Transaction

Exists?
Yes

No

What is
changing?

TrustList Certificate

Start

Updates
Complete?

No

No

Create
Transaction

Validate
Certificate

Yes

Updates
Complete?

Yes Yes

Transaction
Completed

TrustList.Open()

TrustList.Write()

TrustList.CloseAnd
Update()

ServerConfiguration.
UpdateCertificate()

ServerConfiguration.
ApplyChanges()

Figure 22 – The Transaction Lifecycle when using PushManagement

Servers that implement the transaction model shall support the CancelChanges Method and
always set applyChangesRequired to TRUE.

Servers that support the transaction model are expected to support exactly one active
transaction. Once a transaction has started in Session all other Sessions will not be able to
modify TrustLists or Certificates. Transactions are automatically cancelled when the Session
that created it is closed or when the CancelChanges Method is called.

If the transaction model is not supported and applyChangesRequired is TRUE then the
behaviour of the Server for multiple changes is undefined.

If applyChangesRequired is FALSE then any changes are applied before the Method response
is sent.

1.05.04 65 OPC 10000-12: Discovery, Global Services

7.10.3 ServerConfiguration

This Object allows access to the Server’s configuration and it is the target of an HasComponent
reference from the Server Object defined in OPC 10000-5.

This Object and its immediate children shall be visible (i.e. browse access is available) to users
who can access the Server Object. The children of the CertificateGroups Object should only be
visible to Clients with access to the SecurityAdmin Role.

Its representation in the AddressSpace is formally defined in Table 63.

Table 63 – ServerConfiguration Object Definition

Attribute Value

BrowseName 0:ServerConfiguration

TypeDefinition 0:ServerConfigurationType defined in 7.10.4.

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Conformance Units

Push Model for Global Certificate and TrustList Management

7.10.4 ServerConfigurationType

This type defines an ObjectType which represents the configuration of a Server which supports
PushManagement. Its values are defined in Table 64. There is always a well-known instance in
the Server AddressSpace (see 7.10.3) that can be use to configure a Server.

Table 64 – ServerConfigurationType Definition

Attribute Value

BrowseName 0:ServerConfigurationType

IsAbstract False

References NodeClass BrowseName DataType Type
Definition

Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasProperty Variable 0:ApplicationUri 0:UriString 0:PropertyType Optional

0:HasProperty Variable 0:ProductUri 0:UriString 0:PropertyType Optional

0:HasProperty Variable 0:ApplicationType 0:Applicati
onType

0:PropertyType Optional

0:HasProperty Variable 0:ApplicationNames 0:Localized
Text[]

0:PropertyType Optional

0:HasProperty Variable 0:ServerCapabilities 0:String[] 0:PropertyType Mandatory

0:HasProperty Variable 0:SupportedPrivateKeyFormats 0:String[] 0:PropertyType Mandatory

0:HasProperty Variable 0:MaxTrustListSize 0:UInt32 0:PropertyType Mandatory

0:HasProperty Variable 0:MulticastDnsEnabled 0:Boolean 0:PropertyType Mandatory

0:HasProperty Variable 0:HasSecureElement 0:Boolean 0:PropertyType Optional

0:HasProperty Variable 0:SupportsTransactions 0:Boolean 0:PropertyType Optional

0:HasProperty Variable 0:InApplicationSetup 0:Boolean 0:PropertyType Optional

0:HasComponent Method 0:UpdateCertificate See 7.10.5. Mandatory

0:HasComponent Method 0:GetCertificates See 7.10.6. Optional

0:HasComponent Method 0:ApplyChanges See 7.10.7. Mandatory

0:HasComponent Method 0:CancelChanges See 7.10.9. Optional

0:HasComponent Method 0:CreateSigningRequest See 7.10.8. Mandatory

0:HasComponent Method 0:GetRejectedList See 7.10.10. Mandatory

0:HasComponent Method 0:ResetToServerDefaults See 7.10.11. Optional

0:HasComponent Object 0:CertificateGroups 0:CertificateGrou
pFolderType

Mandatory

0:HasComponent Object 0:TransactionDiagnostics 0:TransactionDia
gnosticsType

Optional

Conformance Units

Push Model for Global Certificate and TrustList Management

The CertificateGroups Object organizes the Certificate Groups supported by the Server. It is
described in 7.8.4.6. Servers shall support the DefaultApplicationGroup and may support the
DefaultHttpsGroup or the DefaultUserTokenGroup. Servers may support additional Certificate
Groups depending on their requirements. For example, a Server with two network interfaces
should have a different TrustList for each interface. The second TrustList would be represented
as a new CertificateGroupType Object organized by CertificateGroups Folder.

OPC 10000-12: Discovery, Global Services 66 1.05.04

The ApplicationUri Property specifies the ApplicationUri assigned to the Server. It can be
updated by a Client with access to the SecurityAdmin Role.

The ApplicationNames Property is a list of localized names for the application that may be used
to when registering with a GDS.

The ProductUri Property specifies the ProductUri for the Server that appears in the
ApplicationDescription. It is read-only.

The ApplicationType Property specifies the ApplicationType for the Server that appears in the
ApplicationDescription. It is read-only.

The ServerCapabilities Property specifies the capabilities from Annex D which the Server
supports. The value is the same as the value reported to the LocalDiscoveryServer when the
Server calls the RegisterServer2 Service.

The SupportedPrivateKeyFormats specifies the PrivateKey formats supported by the Server.
Possible values include “PEM” (see RFC 5958) or “PFX” (see PKCS #12). The array is empty
if the Server does not allow external Clients to update the PrivateKey.

The MaxTrustListSize is the maximum size of the TrustList in bytes. 0 means no limit. The
default is 65 535 bytes.

If MulticastDnsEnabled is TRUE then the Server announces itself using multicast DNS. It can
be changed by writing to the Variable.

If HasSecureElement is TRUE then the Server has access to hardware based secure storage
for the PrivateKeys associated with its Certificates.

If the SupportsTransactions Property is TRUE, the Server supports the transaction lifecyle
defined in 7.10.2. If it is FALSE or not present, the Server only supports delaying application of
changes until ApplyChanges is called.

If the InApplicationSetup Property is TRUE then the Server is in the application setup state
described in G.2.The UpdateCertificate Method is used to update a Certificate.

The GetCertificates Method returns the Certificates assigned to each of the CertificateTypes in
a CertificateGroup.

The ApplyChanges Method is used complete changes made to CertificateGroups and/or
TrustLists within the context of a transaction.

The CancelChanges Method is used to cancel an existing transaction.

The CreateSigningRequest Method asks the Server to create a PKCS #10 encoded Certificate
Request that is signed with the Server’s private key.

The GetRejectedList Method returns the list of Certificates which have been rejected by the
Server. It can be used to track activity or allow administrators to move a rejected Certificate
into the TrustList. This Method is the a shortcut for the GetRejectedList Method (see 7.8.3.2)

on the DefaultApplicationGroup CertificateGroup (see 7.8.3.3).

The ResetToServerDefaults Method is used reset the Server security configuration to a default
state.

The TransactionDiagnostics Object reports detailed error information for the current or most
recently completed transaction. The TransactionDiagnostics Object is only visible to Clients
with access to the SecurityAdmin Role.

7.10.5 UpdateCertificate

UpdateCertificate is used to update a Certificate for a Server.

There are the following three use cases for this Method:

1.05.04 67 OPC 10000-12: Discovery, Global Services

• The new Certificate was created based on a signing request created with the Method
CreateSigningRequest defined in 7.10.8. In this case there is no privateKey provided.

• A new privateKey and Certificate was created outside the Server and both are updated
with this Method.

• A new Certificate was created and signed with the information from the old Certificate.
In this case there is no privateKey provided.

The Server shall follow the validation process defined in OPC 10000-4 on the Certificate and
all of the issuer Certificates. If errors occur the Bad_SecurityChecksFailed error is returned.
Note that the validation process requires that the TrustList associated with the CertificateGroup
already contain the Issuer Certificates and their CRLs or that the issuers support online CRL
checks.

The Server shall report an error if the public key does not match the existing Certificate and the
PrivateKey was not provided.

If the Server returns applyChangesRequired=FALSE then it is indicating that it is able to satisfy
the requirements specified for the ApplyChanges Method.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the SecurityAdmin Role (see 7.2).

Signature

UpdateCertificate(

 [in] NodeId certificateGroupId

 [in] NodeId certificateTypeId

 [in] ByteString certificate

 [in] ByteString[] issuerCertificates

 [in] String privateKeyFormat

 [in] ByteString privateKey

[out] Boolean applyChangesRequired

);

Argument Description

certificateGroupId The NodeId of the Certificate Group Object which is affected by the update.
If null the DefaultApplicationGroup is used.

certificateTypeId The type of Certificate being updated. The set of permitted types is specified by
the CertificateTypes Property belonging to the Certificate Group.

certificate The DER encoded Certificate which replaces the existing Certificate.

issuerCertificates The issuer Certificates needed to verify the signature on the new Certificate.

privateKeyFormat The format of the Private Key (PKCS #12 encoded and PKCS #8 Base64 encoded
DER (see RFC 5958)). If the privateKey is not specified the privateKeyFormat is
null or empty.

privateKey The Private Key encoded in the privateKeyFormat.

applyChangesRequired Indicates that the ApplyChanges Method shall be called before the new
Certificate will be used.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The certificateTypeId or certificateGroupId is not valid.

Bad_CertificateInvalid The Certificate is invalid or the format is not supported.

Bad_NotSupported The PrivateKey is invalid or the format is not supported.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityChecksFailed Some failure occurred verifying the integrity of the Certificate.

Bad_TransactionPending There is already a transaction active for another session.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 65 specifies the AddressSpace representation for the UpdateCertificate Method.

OPC 10000-12: Discovery, Global Services 68 1.05.04

Table 65 – UpdateCertificate Method AddressSpace Definition

Attribute Value

BrowseName 0:UpdateCertificate

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

7.10.6 GetCertificates

GetCertificates returns the Certificates assigned to CertificateTypes associated with a
CertificateGroup.

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the SecurityAdmin Role (see 7.2).

Signature

GetCertificates(

 [in] NodeId certificateGroupId

 [out] NodeId[] certificateTypeIds

 [out] ByteString[] certificates

);

Argument Description

certificateGroupId The identifier for the CertificateGroup.

certificateTypeIds The CertificateTypes that currently have a Certificate assigned.
The length of this list is the same as the length as certificates list.
An empty list if the CertificateGroup does not have any CertificateTypes.

certificates A list of DER encoded Certificates assigned to CertificateGroup.
The certificateType for the Certificate is specified by the corresponding element in
the certificateTypes parameter.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_InvalidArgument The certificateGroupId is not valid.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 66 specifies the AddressSpace representation for the GetCertificates Method.

Table 66 – GetCertificates Method AddressSpace Definition

Attribute Value

BrowseName 0:GetCertificates

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.10.7 ApplyChanges

ApplyChanges is used to apply pending Certificate and TrustList updates and to complete a
transaction as described in 7.10.2.

ApplyChanges returns Bad_InvalidState if any TrustList is still open for writing. No changes are
applied and ApplyChanges can be called again after the TrustList is closed.

If a Session is closed or abandoned then the transaction is closed and all pending changes are
discarded.

If ApplyChanges is called and there is no active transaction then the Server returns
Bad_NothingToDo. If there is an active transaction, however, no changes are pending the result
is Good and the transaction is closed.

When a Server Certificate or TrustList changes active SecureChannels are not immediately
affected. This ensures the caller of ApplyChanges can get a response to the Method call. Once

1.05.04 69 OPC 10000-12: Discovery, Global Services

the Method response is returned the Server shall force existing SecureChannels affected by
the changes to renegotiate and use the new Server Certificate and/or TrustLists.

Servers may close SecureChannels without discarding any Sessions or Subscriptions. This will
seem like a network interruption from the perspective of the Client and the Client reconnect
logic (see OPC 10000-4) allows them to recover their Session and Subscriptions. Note that
some Clients may not be able to reconnect because they are no longer trusted.

Other Servers may need to do a complete shutdown. In these cases, the Server shall advertise
its intent to interrupt connections by setting the SecondsTillShutdown and ShutdownReason
Properties in the ServerStatus Variable.

If a TrustList change only affects UserIdentity associated with a Session then Servers shall re-
evaluate the UserIdentity and if it is no longer valid the Session and associated Subscriptions
are closed.

This Method shall be called from an authenticated SecureChannel and from the Session that
created the transaction and has access to the SecurityAdmin Role (see 7.2).

Signature

ApplyChanges();

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Bad_NothingToDo There is no active transaction.

Bad_BadSessionIdInvalid The session is not valid for the active transaction.

Table 67 specifies the AddressSpace representation for the ApplyChanges Method.

Table 67 – ApplyChanges Method AddressSpace Definition

Attribute Value

BrowseName 0:ApplyChanges

References NodeClass BrowseName DataType TypeDefinition ModellingRule

7.10.8 CreateSigningRequest

CreateSigningRequest Method asks the Server to create a PKCS #10 DER encoded Certificate
Request that is signed with the Server’s private key. This request can be then used to request
a Certificate from a CA that expects requests in this format.

Servers shall support one active and one new key pair for each combination of
certificateGroupId and certificateTypeId. If this Method is called multiple times with the same
certificateGroupId and certificateTypeId then any previously generated new key pair, that has
not been made active, is discarded. If a key pair is made active by a call to UpdateCertificate
then the previously active key pair is deleted.

If Certificate associated with the certificateGroupId and certificateTypeId is deleted or replaced
via CreateSelfSignedCertificate (see Error! Reference source not found.) or DeleteCertificate (
see Error! Reference source not found.) then the new key pair is discarded.

The new key pair created with CreateSigningRequest shall be persisted and shall be available
for UpdateCertificate even if it is called from a different Session.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the SecurityAdmin Role (see 7.2).

Signature

CreateSigningRequest(

 [in] NodeId certificateGroupId

[in] NodeId certificateTypeId

OPC 10000-12: Discovery, Global Services 70 1.05.04

 [in] String subjectName

 [in] Boolean regeneratePrivateKey

[in] ByteString nonce

 [out] ByteString certificateRequest

);

Argument Description

certificateGroupId The NodeId of the Certificate Group Object which is affected by the request.
If null the DefaultApplicationGroup is used.

certificateTypeId The type of Certificate being requested. The set of permitted types is specified by
the CertificateTypes Property belonging to the Certificate Group.

subjectName The subject name to use in the Certificate Request.
If not specified the SubjectName from the current Certificate is used.
The format of the subjectName is defined in 7.9.4.

regeneratePrivateKey If TRUE the Server shall create a new Private Key which it stores until the matching
signed Certificate is uploaded with the UpdateCertificate Method. Previously
created Private Keys may be discarded if UpdateCertificate was not called before
calling this method again. If FALSE the Server uses its existing Private Key.

nonce Additional entropy which the caller shall provide if regeneratePrivateKey is TRUE.
It shall be at least 32 bytes long.

certificateRequest The PKCS #10 DER encoded Certificate Request.
If the CertificateRequest is for an ApplicationInstance Certificate then it shall
include all fields required by OPC 10000-6 such as the subjectAltName.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument One or more of the certificateTypeId, certificateGroupId, nonce, or
subjectName paremeters is not valid.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_TransactionPending There is already a transaction active for another session.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 68 specifies the AddressSpace representation for the CreateSigningRequest Method.

Table 68 – CreateSigningRequest Method AddressSpace Definition

Attribute Value

BrowseName 0:CreateSigningRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.10.9 CancelChanges

CancelChanges is used to tell the Server to discard changes to the TrustLists or Certificates
which were waiting for the Client to ApplyChanges.

This Method shall be called from an authenticated SecureChannel and from the Session that
created the transaction and has access to the SecurityAdmin Role (see 7.2).

Signature

CancelChanges();

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 67 specifies the AddressSpace representation for the CancelChanges Method.

1.05.04 71 OPC 10000-12: Discovery, Global Services

Table 69 – CancelChanges Method AddressSpace Definition

Attribute Value

BrowseName 0:CancelChanges

References NodeClass BrowseName DataType TypeDefinition ModellingRule

7.10.10 GetRejectedList

GetRejectedList Method returns the list of Certificates that have been rejected by the Server.

No rules are defined for how the Server updates this list or how long a Certificate is kept in the
list. It is recommended that every valid but untrusted Certificate be added to the rejected list as
long as storage is available. Servers should omit older entries from the list returned if the
maximum message size is not large enough to allow the entire list to be returned.

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the SecurityAdmin Role (see 7.2).

Signature

GetRejectedList(

 [out] ByteString[] certificates

);

Argument Description

certificates The DER encoded form of the Certificates rejected by the Server .

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 70 specifies the AddressSpace representation for the GetRejectedList Method.

Table 70 – GetRejectedList Method AddressSpace Definition

Attribute Value

BrowseName 0:GetRejectedList

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

7.10.11 ResetToServerDefaults

The ResetToServerDefaults Method resets the Server configuration to its default settings.

If the Server is running on a Device that supports OPC 10000-21 the Device is placed in a state
where the Onboarding process has to restart. If the Device does not support OPC 10000-21,
the Server repeats the Application Setup process described in Annex G.

After this Method completes the Server shall set the ServerState to SHUTDOWN and the
shutdownReason to a localized message that warns Clients that their credentials may not work
when the Server restarts. The Server should set the secondsTillShutdown to a time that gives
the Client a chance to receive the response to this Method.

Note that the default configuration for a Server is set by configuration and is not necessarily the
“factory default”. For example, a machine builder could update the default configuration to
ensure that the Server can still communicate with other Servers within the machine after the
reset.

The mechanisms for setting the default configuration is vendor specific.

This Method shall be called from an authenticated SecureChannel and from a Client that has
access to the SecurityAdmin Role (see 7.2).

OPC 10000-12: Discovery, Global Services 72 1.05.04

Signature

ResetToServerDefaults ();

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not authenticated.

Table 71 specifies the AddressSpace representation for the ResetToServerDefaults Method.

Table 71 – ResetToServerDefaults Method AddressSpace Definition

Attribute Value

BrowseName 0:ResetToServerDefaults

7.10.12 ApplicationConfigurationType

The ApplicationConfigurationType ObjectType defines a model which represents the
configuration of a Client or Server. A Server acting as a proxy will add the Objects that represent
the Applications it manages to the ManagedApplications Object (see 7.10.14).

Table 72 – ApplicationConfigurationType Definition

Attribute Value

BrowseName 0:ApplicationConfigurationType

IsAbstract False

References NodeClass BrowseName DataType Type
Definition

Modelling
Rule

Subtype of the ServerConfigurationType defined in 7.10.4.

0:HasProperty Variable 0:Enabled 0:Boolean 0:PropertyType Mandatory

0:HasProperty Variable 0:ProductUri 0:UriString 0:PropertyType Mandatory

0:HasProperty Variable 0:ApplicationUri 0:UriString 0:PropertyType Mandatory

0:HasProperty Variable 0:ApplicationType 0:ApplicationType 0:PropertyType Mandatory

Conformance Units

Managed Application Configuration

The Enabled Property indicates whether the Application is enabled. If FALSE the Application
will not run. If TRUE the Application runs.

The ProductUri Property is the unique identifier for the product. Applications running on different
Devices with the same ProductUri are based on the same software.

The ApplicationUri Property is the unique identifier for the Application which is not the same as
the ProductInstanceUri which identifiers the Device that is executing the Application.

The ApplicationType Property specifies whether the Application is a Client, a Server or both
Applications which do not support OPC UA specify an ApplicationType of Client.

An LDS is exposed an ApplicationConfiguration Object for it with ApplicationType set to
DiscoveryServer. Applications which do not support OPC UA specify an ApplicationType of
Client.

The Application may require software updates. In this case, the software update model
described in OPC 10000-100 specifies an instance of the SoftwareUpdateType that may be
added to the ApplicationConfiguration instance.

7.10.13 ApplicationConfigurationFolderType

A Folder for ApplicationConfiguration Objects which a Server exposes in its AddressSpace.

Table 73 – ApplicationConfigurationFolderType Definition

Attribute Value

1.05.04 73 OPC 10000-12: Discovery, Global Services

BrowseName 0:ApplicationConfigurationFolderType

IsAbstract False

References NodeClass BrowseName DataType Type
Definition

Modelling
Rule

Subtype of the FolderType defined in OPC 10000-5.

0:Organizes Object 0:<ApplicationName> 0:ApplicationCo
nfigurationType

OptionalPla
ceholder

Conformance Units

Managed Application Configuration

7.10.14 ManagedApplications

This Object allows access to the application configurations and it is the target of an Organizes
reference from the Resources Object defined in OPC 10000-5.

Its representation in the AddressSpace is formally defined in Table 74.

Table 74 – ManagedApplications Object Definition

Attribute Value

BrowseName 0:ManagedApplications

TypeDefinition 0:ApplicationConfigurationFolderType defined in 7.10.13.

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Conformance Units

Managed Application Configuration

7.10.15 TransactionDiagnosticsType

This type defines an ObjectType which represents the diagnostics for the last transaction (see
7.10.1. If no transaction has started the values of all Variables have a status of
Bad_OutOfService. All existing results are discarded when a new transaction starts.

Table 75 – TransactionDiagnosticsType Definition

Attribute Value

BrowseName 0:TransactionDiagnosticsType

IsAbstract False

References NodeClass BrowseName DataType Type
Definition

Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasProperty Variable 0:StartTime 0:UtcTime 0:PropertyType Mandatory

0:HasProperty Variable 0:EndTime 0:UtcTime 0:PropertyType Mandatory

0:HasProperty Variable 0:Result 0:StatusCode 0:PropertyType Mandatory

0:HasProperty Variable 0:AffectedTrustLists 0:NodeId [] 0:PropertyType Mandatory

0:HasProperty Variable 0:AffectedCertificateGroups 0:NodeId [] 0:PropertyType Mandatory

0:HasProperty Variable 0:Errors 0:Transaction
ErrorType []

0:PropertyType Mandatory

Conformance Units

Push Model for Global Certificate and TrustList Management

The StartTime Property indicates when transaction started. It has a status of Bad_OutOfService
if a transaction has not started

The EndTime Property indicates when transaction ended. It has a value of DateTime.MinValue
if the transaction has not completed.

The Result Property indicates the overall transaction result. It has a status of Bad_InvalidState
if a transaction has started but not completed. If the transaction has completed the status is
Good and the value is the StatusCode that was returned from the ApplyChanges Method. If the
CancelChanges Method was called the value is Bad_RequestCancelledByClient.

The AffectedTrustLists Property specifies the NodeIds of the TrustLists that are included in the
transaction. It is updated each time as soon as a TrustList is added to the transaction.

OPC 10000-12: Discovery, Global Services 74 1.05.04

The AffectedCertificateGroups Property specifies the NodeIds of the CertificateGroups are
included in the transaction. It is updated each time as soon as a CertificateGroup is added to
the transaction.The Errors Property has a list of errors that occurred when the changes were
applied. Empty if no errors occurred. The TransactionErrorType is defined in 7.10.16.

7.10.16 TransactionErrorType

This type defines a DataType which stores an error that occurred when processing a transaction.
Its values are defined in Table 76.

Table 76 – TransactionErrorType Structure

Name Type Description

TransactionErrorType Structure Subtype of the Structure DataType defined in OPC 10000-5

targetId NodeId The NodeId of the Object that had the error. It is either a TrustListId
or a CertificateGroupId.

error StatusCode The code describing the error.

message LocalizedText A description of the error. It should include enough information to
allow the Client to understand which Certificate(s) and/or CRL(s)
are the source of the problem.

Its representation in the AddressSpace is defined in Table 77.

Table 77 – TransactionErrorType Definition

Attribute Value

BrowseName 0:TransactionErrorType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:Structure DataType defined in OPC 10000-5.

Conformance Units

Push Model for Global Certificate and TrustList Management

7.10.17 CertificateUpdateRequestedAuditEventType

This event is raised when the UpdateCertificate Method is called

Its representation in the AddressSpace is formally defined in Table 78.

Table 78 – CertificateUpdateRequestedAuditEventType Definition

Attribute Value

BrowseName 0:CertificateUpdateRequestedAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the 0:AuditUpdateMethodEventType defined in OPC 10000-5.

Conformance Units

Push Model for Global Certificate and TrustList Management

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

7.10.18 CertificateUpdatedAuditEventType

This event is raised when a Certificate is actually changed.

This is the result of a sucessful call to UpdateCertificate or ApplyChanges on a
ServerConfigurationType Object .

1.05.04 75 OPC 10000-12: Discovery, Global Services

Its representation in the AddressSpace is formally defined in Table 79.

Table 79 – CertificateUpdatedAuditEventType Definition

Attribute Value

BrowseName 0:CertificateUpdatedAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the 0:AuditUpdateMethodEventType defined in OPC 10000-5.

0:HasProperty Variable 0:CertificateGroup 0:NodeId 0:PropertyType Mandatory

0:HasProperty Variable 0:CertificateType 0:NodeId 0:PropertyType Mandatory

Conformance Units

Push Model for Global Certificate and TrustList Management

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

The SourceNode Property for Events of this type shall be assigned to the NodeId of the Object
with the Method that triggered the Event.

The CertificateGroup Property specifies the CertificateGroup that was affected by the update.

The CertificateType Property specifies the type of Certificate that was updated.

8 KeyCredential Management

8.1 Overview

KeyCredential management functions allow the management and distribution of KeyCredentials
which OPC UA Applications use to access AuthorizationServices and/or Brokers. An application
that provides the KeyCredential management functions is called a KeyCredentialService and is
typically combined with the GDS into a single application.

There are two primary models for KeyCredential management: pull and PushManagement. In
PullManagement, the application acts as a Client and uses the Methods on the
KeyCredentialService to request and update KeyCredentials. The application is responsible for
ensuring the KeyCredentials are kept up to date. In PushManagement the application acts as a
Server and exposes Methods which the KeyCredentialService can call to update the
KeyCredentials as required.

A KeyCredentialService can directly manage the KeyCredentials it supplies or it may act as an
intermediary between a Client and a system that does not support OPC UA such as Azure AD
or LDAP.

Note that KeyCredentials are secrets that are directly passed to AuthorizationServices and/or
Brokers and are not Certificates with private keys. Certificate distribution is managed by the
Certificate management model described in 7. For example, AuthorizationServices that support
OAuth2 often require the client to provide a client_id and client_secret parameter with any
request. The KeyCredentials are the values that the application shall place in these parameters.

8.2 Roles and Privileges

KeyCredentialServices restrict access to many of the features they provide. These restrictions
are described either by referring to well-known Roles which a Session must have access to or
by referring to Privileges which are assigned to Sessions using mechanisms other than the well-
known Roles. The well-known Roles used for a KeyCredentialService are listed in Table 80.

Table 80 – Well-known Roles for a KeyCredentialService

Name Description

KeyCredentialAdmin This Role grants rights to request or revoke any KeyCredential.

SecurityAdmin This Role grants the right to change the security configuration of a KeyCredentialService.

OPC 10000-12: Discovery, Global Services 76 1.05.04

The well-known Roles for Server managed by a KeyCredentialService are listed in Table 81.

Table 81 – Well-known Roles for Server managed by a KeyCredentialService

Name Description

SecurityAdmin For PushManagement, this Role grants the right to change the security configuration of
a Server managed by a KeyCredentialService.

The Privileges used for a KeyCredentialService are listed in Table 82.

Table 82 – Privileges for a KeyCredentialService

Name Description

ApplicationSelfAdmin This Privilege grants an OPC UA Application the right to request its own KeyCredentials.

The Certificate used to create the SecureChannel is used to determine the identity of the
OPC UA Application.

ApplicationAdmin This Privilege grants rights to request KeyCredentials for one or more OPC UA
Applications.

The Certificate used to create the SecureChannel is used to determine the identity of the
OPC UA Application and the set of OPC UA Applications that it is authorized to manage.

8.3 Pull Management

Pull management is performed by using a KeyCredentialManagement Object (see 8.5.4). It
allows Clients to request credentials for AuthorizationServices or Brokers which are supported
by the KeyCredentialService. The interactions between the Client and the KeyCredentialService
during PullManagement are illustrated in Figure 23.

looploop

Application
Administration

Application
Administration

KeyCredential
Service

KeyCredential
Service

ClientClient
Configuration

Database1
Configuration

Database1

StartRequest

RequestId

FinishRequest

Wait

KeyCredential

KeyCredential1

Read Configuration1

1 These elements are examples to illustrate how a complete application could work. They are not part of the specification.

Figure 23 – The Pull Model for KeyCredential Management

The Application Administration component may be part of the Client or a standalone utility that
understands how the Client persists its configuration information in its Configuration Database.
The administration and database components are examples to illustrate how an application
could be built and are not a requirement.

Requesting credentials is a two stage process because some KeyCredentialServices require a
human to review and approve requests. The calls to the FinishRequest Method may not be

1.05.04 77 OPC 10000-12: Discovery, Global Services

periodic and could be initiated by events such as a user starting up the application or interacting
with a UI element such as a button.

KeyCredentials shall only be returned to applications which are authorized by the
KeyCredentialService.

Security in PullManagement requires an encrypted channel and Clients with access to the
KeyCredentialAdmin Role, the ApplicationAdmin Priviledge or the ApplicationSelfAdmin
Priviledge.

8.4 Push Management

Push management is performed by using a KeyCredentialConfiguration Object (see 8.6.5)
which is a component of the KeyCredentialConfigurationFolder Object which, in turn, is
component of the ServerConfiguration Object in a Server. The interactions between the
Administration application and the KeyCredentialService during PushManagement are
illustrated in Figure 24.

Administration
Component

Administration
Component

Credential
Service

Credential
Service

ServerServer
Configuration

Database1

Configuration
Database1

UpdateKeyCredential

Credential1

StartRequest

FinishRequest

Credential

GetEndpoints

Server Certificates

1 These elements are examples to illustrate how a complete application could work. They are not part of the specification.

Figure 24 – The Push Model for KeyCredential Management

The Administration Component may use internal APIs to manage KeyCredentials or it could be
a standalone utility that uses OPC UA to communicate with a Server which supports the pull
model (see 8.3). The Configuration Database is used by the Server to persist its configuration
information. The administration and database components are examples to illustrate how an
application could be built and are not a requirement.

To ensure security of the KeyCredentials, the KeyCredentialService component can require that
secrets be encrypted with a key only known to the intended recipient of the KeyCredentials. For
this reason, the Administration Component uses the GetEndpoints Service to read the
Certificate from the Server before initiating the credential request on behalf of the Server.

Security, when using the PushManagement model, requires an encrypted channel and Clients
with acccess to the SecurityAdmin Role.

8.5 Information Model for Pull Management

8.5.1 Overview

The AddressSpace used for PullManagement is shown in Figure 25. Clients interact with the
Nodes defined in this model when they need to request or revoke KeyCredentials for themselves
or for another application. The KeyCredentialManagement Folder is a well-known Object that
appears in the AddressSpace of any Server which supports KeyCredential management.

OPC 10000-12: Discovery, Global Services 78 1.05.04

KeyCredentialManagement:
FolderType

<ServiceName>

ResourceUri

ProfileUris

StartRequest

FinishRequest

Revoke

KeyCredential
ServiceType

Objects:
FolderType

Figure 25 – The Address Space used for Pull KeyCredential Management

8.5.2 KeyCredentialManagementFolderType

This ObjectType represents a Folder that contains KeyCredentialService Objects which may be
accessed via the Server. It is defined in Table 83.

Table 83 – KeyCredentialManagementFolderType Definition

Attribute Value

BrowseName 2:KeyCredentialManagementFolderType

IsAbstract False

References NodeClass BrowseName TypeDefinition Modelling Rule

Subtype of the 0:FolderType defined in OPC 10000-5.

0:HasComponent Object 2:<ServiceName> 2:KeyCredentialServiceType OptionalPlaceholder

Conformance Units

GDS Key Credential Service Pull Model

8.5.3 KeyCredentialManagement

This Object contains the KeyCredentialService Objects which may be accessed via the Server.
It is the target of an Organizes reference from the Objects Folder defined in OPC 10000-5. It is
defined in Table 84.

Table 84 – KeyCredentialManagement Object Definition

Attribute Value

BrowseName 2:KeyCredentialManagement

TypeDefinition 2:KeyCredentialManagementFolderType defined in 8.5.2.

References NodeClass BrowseName TypeDefinition Modelling Rule

Conformance Units

GDS Key Credential Service Pull Model

8.5.4 KeyCredentialServiceType

This ObjectType is the TypeDefinition for an Object that allows the management of
KeyCredentials. It is defined in Table 85.

Table 85 – KeyCredentialServiceType Definition

Attribute Value

BrowseName 2:KeyCredentialServiceType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasProperty Variable 2:ResourceUri 0:String 0:PropertyType Mandatory

0:HasProperty Variable 2:ProfileUris 0:String[] 0:PropertyType Mandatory

0:HasProperty Variable 2:SecurityPolicyUris 0:String[] 0:PropertyType Optional

0:HasComponent Method 2:StartRequest Defined in 8.5.5. Mandatory

1.05.04 79 OPC 10000-12: Discovery, Global Services

0:HasComponent Method 2:FinishRequest Defined in 8.5.6. Mandatory

0:HasComponent Method 2:Revoke Defined in 8.5.7. Optional

Conformance Units

GDS Key Credential Service Pull Model

The ResourceUri Property uniquely identifies the resource that accepts the KeyCredentials
provided by the KeyCredentialService Object.

The ProfileUris Property specifies URIs assigned in OPC 10000-7 to the authentication
mechanism used to communicate with the resource that accepts KeyCredentials provided by
the Object. For example, it could specify that the resource returns JWTs using OAuth2 HTTP
based APIs. As another example, it could specify an MQTT broker that expects a
username/password.

The SecurityPolicyUris Property is the list of SecurityPolicies that may be used when encrypting
the KeyCredentials. One of these URIs is passed in the StartRequest Method. If not present,
The Server shall support all of the SecurityPoliciesUris returned by GetEndpoints,

The StartRequest Method is used to initiate a request for new KeyCredentials for an application.
This request may complete immediately or it can require offline approval by an administrator.

The FinishRequest Method is used to complete a request created by calling StartRequest . If
the KeyCredential is available it is returned. If request is not yet completed it returns
Bad_NothingToDo.

The Revoke Method is used to revoke a previously issued KeyCredential.

8.5.5 StartRequest

StartRequest is used to request a new KeyCredential.

The KeyCredential secret may be encrypted with the public key of the Certificate supplied in
the request. The SecurityPolicyUri specifies the security profile used for the encryption.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the KeyCredentialAdmin Role, the ApplicationAdmin Privilege, or the ApplicationSelfAdmin
Privilege (see 8.2).

Signature

StartRequest (

 [in] String applicationUri

 [in] ByteString publicKey

 [in] String securityPolicyUri

 [in] NodeId[] requestedRoles

 [out] NodeId requestId

);

Argument Description

applicationUri The applicationUri of the application receiving the KeyCredentials.
The request is rejected applicationUri does not uniquely identify an application
known to the GDS (see 6.6.6).
If the requestor is not the same as the application used to create the Secure
Channel then a Certificate should be provided.

publicKey A Public Key used to encrypt the returned KeyCredential secret. For RSA
SecurityPolicies this is the DER encoded form of an X.509 v3 Certificate as
described in OPC 10000-6. For ECC SecurityPolicies this is an ephemeral key
created by the owner of the KeyCredentials.
Not specified if no encryption is required.
If the securityPolicyUri is provided this field shall be provided.

securityPolicyUri The SecurityPolicy used to encrypt the secret.
If the certificate is provided this field shall be provided.

requestedRoles A list of Roles which should be assigned to the KeyCredential.
If not provided the Server chooses suitable defaults.
The Server ignores Roles which it does not recognize or if the caller is not
authorized to request access to the Role.

requestId A unique identifier for the request.

OPC 10000-12: Discovery, Global Services 80 1.05.04

This identifier shall be passed to the FinishRequest (see 8.5.6).

Method Result Codes (defined in Call Service)

Result Code Description

Bad_NotFound The applicationUri is not known to the GDS.

Bad_ConfigurationError The applicationUri is used by multiple records in the GDS.

Bad_CertificateInvalid The Certificate is invalid.

Bad_SecurityPolicyRejected The SecurityPolicy is unrecognized or not allowed or does not match the
Certificate.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 86 specifies the AddressSpace representation for the StartRequest Method.

Table 86 – StartRequest Method AddressSpace Definition

Attribute Value

BrowseName 2:StartRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

8.5.6 FinishRequest

FinishRequest is used to retrieve a KeyCredential.

If a Certificate was provided in the request then the KeyCredential secret is encrypted using an
asymmetric encryption algorithm specified by the SecurityPolicyUri provided in the request.

The credentialId is the identifier, such as a user name, which often needs to be presented when
using the credentialSecret.

The credentialSecret is a UA Binary encoded form of one of the EncryptedSecret DataTypes
defined in OPC 10000-4. If the securityPolicyUri requires an RSA Certificate then the
RsaEncryptedSecret DataType is used. If the securityPolicyUri requires an ECC Certificate then
the EccEncryptedSecret DataType is used.

The Signing Certificate is owned by the source of the KeyCredential. The KeyCredentialService
determines the most appropriate Certificate to use.

If the return code is Bad_RequestNotComplete then the request has not been processed and
the Client should call again. It is expected that a Client will periodically call this Method until
the KeyCredentialService has completed the request.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the KeyCredentialAdmin Role, the ApplicationAdmin Privilege, or the ApplicationSelfAdmin
Privilege (see 8.2). In addition, this Method shall only be called SecureChannel using that same
Certificate that Client used to call StartRequest.

Signature

FinishRequest (

 [in] NodeId requestId

 [in] Boolean cancelRequest

 [out] String credentialId

 [out] ByteString credentialSecret

 [out] String certificateThumbprint

 [out] String securityPolicyUri

 [out] NodeId[] grantedRoles

);

Argument Description

requestId The identifier returned from a previous call to StartRequest.

1.05.04 81 OPC 10000-12: Discovery, Global Services

cancelRequest If TRUE the request is cancelled and no KeyCredentials are returned.
If FALSE the normal processing proceeds.

credentialId The unique identifier for the KeyCredential.

credentialSecret The secret associated with the KeyCredential.

certificateThumbprint The thumbprint of the Certificate used to encrypt the secret for RSA
SecurityPolicies. Set to NULL for ECC SecurityPolicies.

securityPolicyUri The SecurityPolicy used to create the credentialSecret.

grantedRoles A list of Roles which have been granted to KeyCredential.
If empty then the information is not relevant or not available.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The requestId is does not reference to a valid request for the Application.

Bad_RequestNotComplete The request has not been processed by the Server yet.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_RequestNotAllowed The KeyCredential manager rejected the request.
The text associated with the error should indicate the exact reason.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 87 specifies the AddressSpace representation for the FinishRequest Method.

Table 87 – FinishRequest Method AddressSpace Definition

Attribute Value

BrowseName 2:FinishRequest

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

8.5.7 Revoke

Revoke is used to revoke a KeyCredential used by a Client or Server.

KeyCredentials shall be deleted when revoked.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the KeyCredentialAdmin Role, the ApplicationAdmin Privilege, or the ApplicationSelfAdmin
Privilege (see 8.2).

Signature

Revoke (

 [in] String credentialId

);

Argument Description

credentialId The unique identifier for the KeyCredential.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The credentialId is does not reference a valid KeyCredential.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 88 specifies the AddressSpace representation for the RevokeCredential Method.

Table 88 – Revoke Method AddressSpace Definition

Attribute Value

BrowseName 2:Revoke

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable 0:InputArguments Argument[] 0:PropertyType Mandatory

OPC 10000-12: Discovery, Global Services 82 1.05.04

8.5.8 KeyCredentialAuditEventType

This abstract event is raised when an operation affecting KeyCredentials occur

This Event and it subtypes are security related and Servers shall only report them to users
authorized to view security related audit events.

Its representation in the AddressSpace is formally defined in Table 90.

Table 89 – KeyCredentialAuditEventType Definition

Attribute Value

BrowseName 0:KeyCredentialAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:AuditUpdateMethodEventType defined in OPC 10000-5.

0:HasProperty Variable ResourceUri String 0:PropertyType Mandatory

Conformance Units

GDS Key Credential Service Pull Model

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

The ResourceUri Property specifies the URI for the resource which accepts the KeyCredential.

8.5.9 KeyCredentialRequestedAuditEventType

This event is raised when a new KeyCredential request has been accepted or rejected by the
Server.

This can be the result of a StartRequest Method call.

Its representation in the AddressSpace is formally defined in Table 90.

Table 90 – KeyCredentialRequestedAuditEventType Definition

Attribute Value

BrowseName 2:KeyCredentialRequestedAuditEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:KeyCredentialAuditEventType defined in 8.5.8.

Conformance Units

GDS Key Credential Service Pull Model

This EventType inherits all Properties of the KeyCredentialAuditEventType.

8.5.10 KeyCredentialDeliveredAuditEventType

This event is raised when a KeyCredential is delivered by the Server to an application.

This is the result of a FinishRequest Method completing.

Its representation in the AddressSpace is formally defined in Table 91.

Table 91 – KeyCredentialDeliveredAuditEventType Definition

Attribute Value

BrowseName 2:KeyCredentialDeliveredAuditEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:KeyCredentialAuditEventType defined in 8.5.8.

Conformance Units

GDS Key Credential Service Pull Model

1.05.04 83 OPC 10000-12: Discovery, Global Services

This EventType inherits all Properties of the KeyCredentialAuditEventType.

8.5.11 KeyCredentialRevokedAuditEventType

This event is raised when a KeyCredential is revoked.

This is the result of a RevokeKeyCredential Method completing.

Its representation in the AddressSpace is formally defined in Table 92.

Table 92 – KeyCredentialRevokedAuditEventType Definition

Attribute Value

BrowseName 2:KeyCredentialRevokedAuditEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:KeyCredentialAuditEventType defined in 8.5.8.

Conformance Units

GDS Key Credential Service Pull Model

This EventType inherits all Properties of the KeyCredentialAuditEventType.

8.6 Information Model for Push Management

8.6.1 Overview

The AddressSpace used for PushManagement is shown in Figure 26. Clients interact with the
Nodes defined in this model when they need update the KeyCredentials used by a Server to
access resources such as Brokers or Authorization Servers. The KeyCredentialConfiguration
Folder is a well-known Object that appears in the AddressSpace of any Server which supports
KeyCredential management.

Server
Configuration

KeyCredentialConfiguration

ResourceUri
Update

Credential

KeyCredential
ConfigurationType

ServiceStatus

<ResourceName>

ProfileUri

EndpointUrls

Delete
Credential

KeyCredential
ConfigurationFolderType

Create
Credential

GetEncrypting
Key

Figure 26 – The Address Space used for Push KeyCredential Management

8.6.2 KeyCredentialConfigurationFolderType

This ObjectType is the TypeDefinition for an Folder Object that contains the
KeyCredentialConfiguration Objects which may be accessed via the Server.

Table 93 – KeyCredentialConfigurationFolderType Definition

Attribute Value

BrowseName 0:KeyCredentialConfigurationFolderType

IsAbstract False

OPC 10000-12: Discovery, Global Services 84 1.05.04

References NodeClass BrowseName TypeDefinition Modelling Rule

Subtype of the 0:FolderType defined in OPC 10000-5.

0:HasComponent Object 0:<ServiceName> 0:KeyCredentialConfigurationType Optional
Placeholder

0:HasComponent Method 0:CreateCredential Defined in 8.6.3. Optional

Conformance Units

GDS Key Credential Service Push Model

8.6.3 CreateCredential

CreateCredential is used to add a new KeyCredentialConfiguration Object.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the SecurityAdmin Role (see 8.2).

Signature

CreateCredential (

 [in] String name

 [in] String resourceUri

 [in] String profileUri

 [in] String[] endpointUrls

 [out] NodeId credentialNodeId

);

Argument Description

name This the BrowseName of the new Object.

resourceUri The resourceUri uniquely identifies the resource that accepts the KeyCredentials. A
valid URI shall be provided.

profileUri The specified URI assigned in OPC 10000-7 to the protocol used to communicate with
the resource identified by the resourceUri. A valid URI shall be provided.

endpointUrls The specifies URLs used by the Server to communicate with the resource identified by
the resourceUri. Valid URLs shall be provided.

credentialNodeId A unique identifier for the new KeyCredentialConfiguration Object Node.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The resourceUri, profileUri, or one or more endpointUrls are not valid.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 94 specifies the AddressSpace representation for the CreateCredential Method.

Table 94 – CreateCredential Method AddressSpace Definition

Attribute Value

BrowseName 0:CreateCredential

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments Argument[] 0:PropertyType Mandatory

8.6.4 KeyCredentialConfiguration

This Object is an instance of FolderType. It contains The Objects which may be accessed via
the Server. It is the target of an HasComponent reference from the ServerConfiguration Object
defined in 7.10.3. It is defined in Table 95.

Table 95 – KeyCredentialConfiguration Object Definition

Attribute Value

BrowseName 0:KeyCredentialConfiguration

TypeDefinition 0:KeyCredentialConfigurationFolderType defined in 8.6.2.

References NodeClass BrowseName TypeDefinition Modelling Rule

1.05.04 85 OPC 10000-12: Discovery, Global Services

Conformance Units

GDS Key Credential Service Push Model

8.6.5 KeyCredentialConfigurationType

This ObjectType is the TypeDefinition for an Object that allows the configuration of
KeyCredentials used by the Server. It also includes basic status information which report
problems accessing the resource that might be related to bad KeyCredentials. It is defined in
Table 96.

Table 96 – KeyCredentialConfigurationType Definition

Attribute Value

BrowseName 0:KeyCredentialConfigurationType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasProperty Variable 0:ResourceUri 0:String 0:PropertyType Mandatory

0:HasProperty Variable 0:ProfileUri 0:String 0:PropertyType Mandatory

0:HasProperty Variable 0:EndpointUrls 0:String[] 0:PropertyType Optional

0:HasProperty Variable 0:CredentialId 0:String 0:PropertyType Optional

0:HasProperty Variable 0:ServiceStatus 0:StatusCode 0:PropertyType Optional

0:HasComponent Method 0:GetEncryptingKey Defined in 8.6.6. Optional

0:HasComponent Method 0:UpdateCredential Defined in 8.6.7. Optional

0:HasComponent Method 0:DeleteCredential Defined in 8.6.8. Optional

Conformance Units

GDS Key Credential Service Push Model

The ResourceUri Property uniquely identifies the resource that accepts the KeyCredentials.

The ProfileUri Property specifies the protocol used to access the resource.

The EndpointUrls Property specifies the URLs that the Server uses to access the resource.

The CredentialId Property is the identifier, such as a user name, which often needs to be
presented when using the credentialSecret.

The ServiceStatus Property indicates the result of the last attempt to communicate with the
resource. The following common error values are defined:

ServiceStatus Description

Bad_OutOfService Communication was not attempted by the Server because Enabled is FALSE.

Bad_IdentityTokenRejected Communication failed because the KeyCredentials are not valid.

Bad_NoCommunication Communication failed because the endpoint is not reachable.
Where possible a more specific error code should be used.

See OPC 10000-4 for a complete list of standard StatusCodes.

The GetEncryptingKey Method is used request a Public Key that can be used to encrypt the
KeyCredentials.

The UpdateKeyCredential Method is used to change the KeyCredentials used by the Server.

The DeleteKeyCredential Method is used to delete the KeyCredentials stored by the Server.

8.6.6 GetEncryptingKey

GetEncryptingKey is used to request a key that can be used to encrypt a KeyCredential.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the SecurityAdmin Role (see 8.2).

Signature

GetEncryptingKey(

 [in] String credentialId

 [in] String requestedSecurityPolicyUri

 [out] ByteString publicKey

OPC 10000-12: Discovery, Global Services 86 1.05.04

 [out] String revisedSecurityPolicyUri

);

Argument Description

credentialId The unique identifier associated with the KeyCredential.

requestedSecurityPolicyUri The SecurityPolicy used to encrypt the secret.
If not specified the Server chooses a suitable default.

publicKey The Public Key used to encrypt the secret.
The format depends on the SecurityPolicyUri.

revisedSecurityPolicyUri The SecurityPolicy used to encrypt the secret.
It also specifies the contents of the publicKey.
This may be different from the requestedSecurityPolicyUri.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The credentialId is not valid.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 97 specifies the AddressSpace representation for the GetEncryptingKey Method.

Table 97 – GetEncryptingKey Method AddressSpace Definition

Attribute Value

BrowseName 0:GetEncryptingKey

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

8.6.7 UpdateCredential

UpdateCredential is used to update a KeyCredential used by a Server.

The KeyCredential secret may be encrypted using the key returned by GetEncryptingKey. The
SecurityPolicyUri species the algorithm used for encryption. The format of the encrypted data
is described in 8.5.6.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the SecurityAdmin Role (see 8.2).

Signature

UpdateCredential(

 [in] String credentialId

 [in] ByteString credentialSecret

 [in] String certificateThumbprint

 [in] String securityPolicyUri

);

Argument Description

credentialId The credentialId is the identifier, such as a user name, which often needs to be
presented when using the credentialSecret.

credentialSecret The secret associated with the KeyCredential.

certificateThumbprint The thumbprint of the Certificate used to encrypt the secret.
For RSA SecurityPolicies this shall be one of the Application Instance Certificates
assigned to the Server. For ECC SecurityPolicies this field is not specified.Not
specified if the secret is not encrypted.

securityPolicyUri The SecurityPolicy used to encrypt the secret.
If not specified the secret is not encrypted.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_InvalidArgument The credentialId or credentialSecret is not valid.

Bad_CertificateInvalid The Certificate is invalid or it is not one of the Server’s Certificates.

Bad_SecurityPolicyRejected The SecurityPolicy is unrecognized or not allowed.

1.05.04 87 OPC 10000-12: Discovery, Global Services

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 99 specifies the AddressSpace representation for the UpdateKeyCredential Method.

Table 98 – UpdateCredential Method AddressSpace Definition

Attribute Value

BrowseName 0:UpdateCredential

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

8.6.8 DeleteCredential

DeleteCredential is used to delete a KeyCredential used by a Server.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the SecurityAdmin Role (see 8.2).

Signature

DeleteCredential();

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 98 specifies the AddressSpace representation for the DeleteKeyCredential Method.

Table 99 – DeleteCredential Method AddressSpace Definition

Attribute Value

BrowseName 0:DeleteCredential

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.6.9 KeyCredentialUpdatedAuditEventType

This event is raised when a KeyCredential is updated.

This Event and its subtypes report sensitive security related information. Servers shall only
report these Events to Clients which are authorized to view such information.

This is the result of a UpdateCredential Method completing.

Its representation in the AddressSpace is formally defined in Table 100.

Table 100 – KeyCredentialUpdatedAuditEventType Definition

Attribute Value

BrowseName 0:KeyCredentialUpdatedAuditEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:KeyCredentialAuditEventType defined in 8.5.8.

Conformance Units

Push Model for KeyCredential Service

This EventType inherits all Properties of the KeyCredentialAuditEventType.

8.6.10 KeyCredentialDeletedAuditEventType

This event is raised when a KeyCredential is updated.

OPC 10000-12: Discovery, Global Services 88 1.05.04

This is the result of a DeleteCredential Method completing.

Its representation in the AddressSpace is formally defined in Table 101.

Table 101 – KeyCredentialDeletedAuditEventType Definition

Attribute Value

BrowseName 0:KeyCredentialDeletedAuditEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:KeyCredentialAuditEventType defined in 8.5.8.

Conformance Units

GDS Key Credential Service Push Model

This EventType inherits all Properties of the KeyCredentialAuditEventType.

9 AuthorizationServices

9.1 Overview

AuthorizationServices provide Access Tokens to Clients that may use them to access resources.
A Server, such as a GDS, with AuthorizationService capabilities may support one or more
AuthorizationService Objects (see 9.6.2) which may represent an internal AuthorizationService
or be an API to an external AuthorizationService. The AuthorizationService is best used in
conjunction with the Role model defined in OPC 10000-5. In this scenario, the mapping rules
assigned to the Roles known to the Server are used to populate an Access Token with the Roles
associated with the UserIdentity provided when the Client submits the request. This scenario is
illustrated in Figure 27.

Client

Mapping
Rules

Authorization
Service

Server

Role
Permissions

Access Token
{Roles}

2

3

Access Token
{Roles}

UserIdentity
Token1

4

5

6

Node

7

8

Figure 27 – Roles and AuthorizationServices

When requesting Access Tokens from an AuthorizationService Object there are three primary
use cases based on where the UserIdentityToken comes from: Implicit, Explicit and Chained.
These use cases are discussed below. The Implicit and Explicit use cases are implementations
of the ‘Indirect’ model for AuthorizationServices described in OPC 10000-4. The Chained use
case is an implementation of the ‘Direct’ model.

9.2 Roles and Privileges

AuthorizationServices restrict access to many of the features they provide. These restrictions
are described either by referring to well-known Roles which a Session must have access to or

1.05.04 89 OPC 10000-12: Discovery, Global Services

by referring to Privileges which are assigned to Sessions using mechanisms other than the well-
known Roles. The well-known Roles for an AuthorizationService are listed in Table 102.

Table 102 – Well-known Roles for an AuthorizationService

Name Description

AuthorizationServiceAdmin This Role grants the right to manage the configuration of an AuthorizationService.

SecurityAdmin This Role grants the right to change the security configuration of an
AuthorizationService.

The Privileges for an AuthorizationService are listed in Table 103.

Table 103 – Privileges for an AuthorizationService

Name Description

AccessTokenRequestor This Privilege grants an OPC UA Application the right to request AccessTokens.

The Certificate used to create the SecureChannel is used to determine the identity of
the OPC UA Application.

A KeyCredential (see 0) provided as a UserIdentityToken may also be used to
determine if the Client has access to this Privilege.

9.3 Implicit

The implicit use case means the Client’s Application Certificate and any UserIdentityToken
associated with the Session is used to determine whether an Access Token is permitted and
what claims are available. This use case is illustrated in Figure 28.

ClientClient
Target
Server
Target
Server

Authorization
Server

Authorization
Server

GetEndpoints

UserTokenPolicy[]

GetEndpoints

UserTokenPolicy[]

CreateSession/ActivateSession(UserName)

SessionId

RequestAccessToken(null)

Access Token (JWT)

CreateSession(Access Token(JWT))

SessionId

Figure 28 – Implicit Authorization

The Target Server is the Server that the Client wishes to access. It publishes a UserTokenPolicy
that indicates that it accepts Access Tokens from an Authorization Server at a URL specified in
the policy. The policy also contains the NodeId of the AuthorizationService Object which then
is used to request the Access Token.

The Client needs to be trusted by the Authorization Server and this could require the Client to
present user credentials. These credentials can be provided to the Client out-of-band (e.g. an
administrator specified them in the Client configuration file). The user credentials used can be
any type of user credential including X.509 and JWT.

OPC 10000-12: Discovery, Global Services 90 1.05.04

The Session may be created explicitly with a call to CreateSession or it can be implicit via a
Session-less Method Call.

After creating the Session, the Client calls the RequestAccessToken Method on the
AuthorizationService Object. The Authorization Server determines if the Client is permitted to
receive an Access Token and populates it with any claims granted to the Client. This claims
may include Roles granted to the Session by applying the mapping rules for the Roles (see
OPC 10000-3).

Once the Client has the Access Token, it passes the Access Token to the Target Server which
validates the Access Token, as described in OPC 10000-4. The Target Server is configured
out-of-band with the Certificate needed to validate the Access Tokens issued by the
Authorization Server.

9.4 Explicit

The explicit use case means the Client provides the UserIdentityToken used to determine
whether an Access Token is permitted and what claims are available in the call to
RequestAccessToken. This use case is illustrated in Figure 29.

ClientClient
Target
Server
Target
Server

Authorization
Server

Authorization
Server

GetEndpoints

UserTokenPolicy[]

GetEndpoints

UserTokenPolicy[]

CreateSession/ActivateSession(null)

SessionId

GetServiceDescription

UserTokenPolicy[]

RequestAccessToken(UserName)

Access Token (JWT)

CreateSession(Access Token(JWT))

SessionId

Figure 29 – Explicit Authorization

The Target Server is the Server that the Client wishes to access. The initial interactions are the
same as with the Implicit use case described in 9.3.

The Session may be created explicitly with a call to CreateSession or it can be implicit via a
Session-less Method Call.

After creating the Session, the Client reads the available UserTokenPolicies from the
AuthorizationService Object if it has not previously cached the information . It then chooses one
that matches credentials that it has been provided out-of-band. The Client then calls the
RequestAccessToken Method on the AuthorizationService Object.

The Authorization Server determines if the Client is permitted to receive an Access Token. The
rest of the interactions are the same as described in 9.3.

9.5 Chained

The chained use case means the Client provides an Access Token issued by another
AuthorizationService acting as an Identity Provider. This use case is illustrated in Figure 30.

1.05.04 91 OPC 10000-12: Discovery, Global Services

ClientClient
Target
Server
Target
Server

Authorization
Server

Authorization
Server

Identity
Provider
Identity
Provider

GetEndpoints

UserTokenPolicy[]

GetEndpoints

UserTokenPolicy[]

CreateSession/ActivateSession(null)

SessionId

GetServiceDescription

UserTokenPolicy[]

OAuth2 Authorize (authorization_code)

Access Token (Identity Provider)

RequestAccessToken(Access Token (Identity Provider))

Access Token (JWT)

CreateSession(Access Token (JWT))

SessionId

Figure 30 – Chained Authorization

The Target Server is the Server that the Client wishes to access. The initial interactions are the
same as with the Implicit use case described in 9.3.

The Session may be created explicitly with a call to CreateSession or it can be implicit via a
Session-less Method Call.

After creating the Session, the Client reads the available UserTokenPolicies from the
AuthorizationService Object if it has not previously cached the information . It then chooses one
that references an Identity Provider for the user identities that it has available. The user
identities may be provided out-of-band or they may be provided by an interactive user. The
Client then requests an Access Token from the Identity Provider.

The Client then calls the RequestAccessToken Method on the AuthorizationService Object and
passes the Access Token from the Identity Provider.

The Authorization Server determines if the Client is permitted to receive an Access Token based
on the claims granted by the Identity Provider. The rest of the interactions are the same as
described in 9.3.

9.6 Information Model for Requesting Access Tokens

9.6.1 Overview

The information model for AuthorizationServices which allow Clients to request Access Tokens
from a Server is shown in Figure 31.

OPC 10000-12: Discovery, Global Services 92 1.05.04

Authorization
Services

<ServiceName>

ServiceUri

UserTokenPolicies

Request
AccessToken

Authorization
ServiceType

Service
Certificate

Objects:
FolderType

GetService
Description

Figure 31 – The Model for Requesting Access Tokens from AuthorizationServices

9.6.2 AuthorizationServicesFolderType

This ObjectType represents a folder that contains AuthorizationService Objects which may be
accessed via the Server. It is defined in Table 104.

Table 104 – AuthorizationServicesFolderType Definition

Attribute Value

BrowseName 2:AuthorizationServicesFolderType

IsAbstract False

References NodeClass BrowseName TypeDefinition Modelling Rule

Subtype of the FolderType defined in OPC 10000-5.

0:Organizes Object 2:<ServiceName> 2:AuthorizationServiceType OptionalPlaceholder

Conformance Units

GDS Authorization Service Server

9.6.3 AuthorizationServices

This Object is an instance of AuthorizationServicesFolderType It contains The
AuthorizationService Objects which may be accessed via the GDS. It is the target of an
Organizes reference from the Objects Folder defined in OPC 10000-5. It is defined in Table 105.

Table 105 – AuthorizationServices Object Definition

Attribute Value

BrowseName 2:AuthorizationServices

TypeDefinition 2:AuthorizationServicesFolderType defined in 9.6.2.

References NodeClass BrowseName TypeDefinition Modelling Rule

Conformance Units

GDS Authorization Service Server

9.6.4 AuthorizationServiceType

This ObjectType is the TypeDefinition for an Object that allows access to an
AuthorizationService. It is defined in Table 106.

Table 106 – AuthorizationServiceType Definition

Attribute Value

BrowseName 2:AuthorizationServiceType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasProperty Variable 2:ServiceUri 0:String 0:PropertyType Mandatory
0:HasProperty Variable 2:ServiceCertificate 0:ByteString 0:PropertyType Mandatory

1.05.04 93 OPC 10000-12: Discovery, Global Services

0:HasProperty Variable 2:UserTokenPolicies 0:UserToken
Policy []

0:PropertyType Optional

0:HasComponent Method 2:GetServiceDescription Defined in 9.6.6. Mandatory
0:HasComponent Method 2:RequestAccessToken Defined in 9.6.5. Optional

Conformance Units

GDS Authorization Service Server

The ServiceUri is a globally unique identifier that allows a Client to correlate an instance of
AuthorizationServiceType with instances of AuthorizationServiceConfigurationType (see 9.7.4).

The ServiceCertificate is the Certificate required to check any Signature that is included with
the Access Tokens. The ServiceCertificate may be a complete chain (see OPC 10000-6 for
information on encoding chains).

The UserTokenPolicies Property specifies the UserIdentityTokens which are accepted by the
RequestAccessToken Method.

The GetServiceDescription Method is used read the metadata needed to request Access
Tokens.

The RequestAccessToken Method is used to request an Access Token from the
AuthorizationService.

9.6.5 RequestAccessToken

RequestAccessToken is used to request an Access Token from an AuthorizationService. The
scenarios where this Method is used are described fully in 9.3, 9.4 and 9.5.

The PolicyId and UserTokenType of the identityToken shall match one of the elements of the
UserTokenPolicies Property. If the identityToken is not provided the Server should use the
ApplicationInstanceCertificate and/or the UserIdentityToken provided for the Session (or the
request if using a Session-less Method Call) to determine privileges.

If the associated UserTokenPolicy provides a SecurityPolicyUri, then the identityToken is
encrypted and digitally signed using the format defined for UserIdentityToken secrets in OPC
10000-4.

For UserNameIdentityTokens the secret is the password and the signature is created with the
Client ApplicationInstanceCertificate . The signed and encrypted secret is passed in the
password field.

For X.509 v3 IdentityTokens the secret is null and signature is created with the key associated
with user Certificate. The signed and encrypted secret is passed in the certificateData field.

For IssuedIdentityTokens the secret is the token and the signature is created with the key
associated a user Certificate or the Client ApplicationInstanceCertificate. The signed and
encrypted secret is passed in the tokenData field.

The Server shall check the signingTime in against the current system clock. The Server shall
reject the request if the signingTime is outside of a configurable range. A suitable default value
is 5 minutes. The permitted clock skew is a Server configuration parameter.

This Method shall be called from an encrypted SecureChannel and from a Client that has access
to the AccessTokenRequestor Privilege (see 9.2).

Signature

RequestAccessToken (

 [in] UserIdentityToken identityToken

 [in] String resourceId

 [out] String accessToken

);

Argument Description

identityToken The identity used to authorize the Access Token request.

resourceId The identifier for the Resource that the Access Token is used to access.
This is usually the ApplicationUri for a Server.

accessToken The Access Token granted to the application.

OPC 10000-12: Discovery, Global Services 94 1.05.04

Method Result Codes (defined in Call Service)

Result Code Description

Bad_IdentityTokenInvalid The identityToken does not match one of the allowed UserTokenPolicies.

Bad_IdentityTokenRejected The identityToken was rejected.

Bad_NotFound The resourceId is not known to the Server.

Bad_UserAccessDenied The current user does not have the rights required.

Bad_SecurityModeInsufficient The SecureChannel is not encrypted.

Table 107 specifies the AddressSpace representation for the RequestAccessToken Method.

Table 107 – RequestAccessToken Method AddressSpace Definition

Attribute Value

BrowseName 2:RequestAccessToken

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

9.6.6 GetServiceDescription

GetServiceDescription is used to read the metadata needed to request Access Tokens from the
AuthorizationService.

Signature

GetServiceDescription (

 [out] String serviceUri

 [out] ByteString serviceCertificate

 [out] UserTokenPolicy[] userTokenPolicies

);

Argument Description

serviceUri A globally unique identifier for the AuthorizationService.

serviceCertificate The complete chain of Certificates needed to validate the Access Tokens
provided by the AuthorizationService.

userTokenPolicies The UserIdentityTokens accepted by the AuthorizationService.

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied The current user does not have the rights required.

Table 108 specifies the AddressSpace representation for the GetServiceDescription Method.

Table 108 – GetServiceDescription Method AddressSpace Definition

Attribute Value

BrowseName 2:GetServiceDescription

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType Mandatory

9.6.7 AccessTokenIssuedAuditEventType

This event is raised when a AccessToken is issued.

This is the result of a RequestAccessToken Method completing.

This Event and it subtypes are security related and Servers shall only report them to users
authorized to view security related audit events.

1.05.04 95 OPC 10000-12: Discovery, Global Services

Its representation in the AddressSpace is formally defined in Table 109.

Table 109 – AccessTokenIssuedAuditEventType Definition

Attribute Value

BrowseName 2:AccessTokenIssuedAuditEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:AuditUpdateMethodEventType defined in OPC 10000-5.

Conformance Units

GDS Authorization Service Server

This EventType inherits all Properties of the AuditUpdateMethodEventType. Their semantic is
defined in OPC 10000-5.

9.7 Information Model for Configuring Servers

9.7.1 Overview

The information model used to provide Servers with the information needed to accept Access
Tokens from AuthorizationServices in Figure 32.

Server
Configuration

AuthorizationServices

ServiceUri

AuthorizationService
ConfigurationType

ServiceCertif icate

<ServiceName>

IssuerEndpointUrl

AuthorizationService
ConfigurationFolderType

Figure 32 – The Model for Configuring Servers to use AuthorizationServices

If a Server is also a Client that needs to access the AuthorizationService, the necessary
KeyCredentials can be provided with the push configuration management model (see 8.4).

9.7.2 AuthorizationServiceConfigurationFolderType

This ObjectType represents a folder that contains AuthorizationServiceConfiguration Objects
which may be accessed via the Server. It is defined in Table 110.

Table 110 – AuthorizationServicesFolderType Definition

Attribute Value

BrowseName 0:AuthorizationServicesConfigurationFolderType

IsAbstract False

References NodeClas
s

BrowseName TypeDefinition Modelling Rule

Subtype of the 0:FolderType defined in OPC 10000-5.

0:HasComponent Object 0:<ServiceName> 0:AuthorizationService
ConfigurationType

OptionalPlaceholder

Conformance Units

Authorization Service Configuration Server

OPC 10000-12: Discovery, Global Services 96 1.05.04

9.7.3 AuthorizationServices

This Object is an instance of FolderType. It contains The AuthorizationServiceConfiguration
Objects which may be accessed via the Server. It is the target of an HasComponent reference
from the ServerConfiguration Object defined in 7.10.3. It is defined in Table 111.

Table 111 – AuthorizationServices Object Definition

Attribute Value

BrowseName 0:AuthorizationServices

TypeDefinition 0:AuthorizationServicesConfigurationFolderType defined in 9.6.2.

References NodeClass BrowseName TypeDefinition Modelling Rule

Conformance Units

Authorization Service Configuration Server

9.7.4 AuthorizationServiceConfigurationType

This ObjectType is the TypeDefinition for an Object that allows the configuration of an
AuthorizationService used by a Server. It is defined in Table 112.

Table 112 – AuthorizationServiceConfigurationType Definition

Attribute Value

BrowseName 0:AuthorizationServiceConfigurationType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Subtype of the 0:BaseObjectType defined in OPC 10000-5.

0:HasProperty Variable 0:ServiceUri 0:String 0:PropertyType Mandatory

0:HasProperty Variable 0:ServiceCertificate 0:ByteString 0:PropertyType Mandatory

0:HasProperty Variable 0:IssuerEndpointUrl 0:String 0:PropertyType Mandatory

Conformance Units

Authorization Service Configuration Server

The ServiceUri Property uniquely identifies the AuthorizationService.

The ServiceCertificate Property has the Certificate(s) needed to verify Access Tokens issued
by the AuthorizationService. The value is the complete chain of Certificate needed for
verification (see OPC 10000-6 for information on encoding chains).

The IssuerEndpointUrl is the value of the IssuerEndpointUrl in UserTokenPolicies which require
the use of the AuthorizationService. This contents of the field depend on the
AuthorizationService and are described in OPC 10000-6.

10 Namespaces

10.1 Namespace Metadata

Table 113 defines the namespace metadata for this document. The Object is used to provide
version information for the namespace and an indication about static Nodes. Static Nodes are
identical for all Attributes in all Servers, including the Value Attribute. See OPC 10000-5 for
more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a
component of the Namespaces Object that is part of the Server Object. The
NamespaceMetadataType ObjectType and its Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML
file. The UANodeSet XML schema is defined in OPC 10000-6.

1.05.04 97 OPC 10000-12: Discovery, Global Services

Table 113 – NamespaceMetadata Object for this Document

Attribute Value

BrowseName 2:http://opcfoundation.org/UA/GDS/

Property DataType Value

0:NamespaceUri 0:String http://opcfoundation.org/UA/GDS/

0:NamespaceVersion 0:String 1.05.04

0:NamespacePublicationDate 0:DateTime 2024-07-01

0:IsNamespaceSubset 0:Boolean False

0:StaticNodeIdTypes 0:IdType [] 0

0:StaticNumericNodeIdRange 0:NumericRange []

0:StaticStringNodeIdPattern 0:String

10.2 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming
authorities. The Attributes NodeId and BrowseName are identifiers. A Node in the UA
AddressSpace is unambiguously identified using a NodeId. Unlike NodeIds, the BrowseName
cannot be used to unambiguously identify a Node. Different Nodes may have the same
BrowseName. They are used to build a browse path between two Nodes or to define a standard
Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName.
However, if they want to provide a standard Property, its BrowseName shall have the
namespace of the standards body although the namespace of the NodeId reflects something
else, for example the EngineeringUnits Property. All NodeIds of Nodes not defined in this
document shall not use the standard namespaces.

Table 114 provides a list of namespaces and their index used for BrowseNames in this
document. The default namespace of this document is not listed since all BrowseNames without
prefix use this default namespace.

Table 114 – Namespaces used in this document

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

http://opcfoundation.org/UA/GDS/ 2 2:ApplicationRecordDataType

OPC 10000-12: Discovery, Global Services 98 1.05.04

Annex A
(informative)

Deployment and Configuration

A.1 Firewalls and Discovery

Many systems will have multiple networks that are isolated by firewalls. These firewalls will
frequently hide the network addresses of the hosts behind them unless the Administrator has
specifically configured the firewall to allow external access. In some networks the Administrator
will place hosts with externally available Servers outside the firewall as shown in Figure 33.

Client

Firewall

Server

Publicly Visible Network

Client

Internal Network

Server

Internet

Figure 33 – Discovering Servers Outside a Firewall

In this configuration Servers running on the publicly visible network will have the same network
address from the perspective of all Clients which means the URLs returned by DiscoveryServers
are not affected by the location of the Client.

In other networks the Administrator will configure the firewall to allow access to selected
Servers. An example is shown in Figure 34.

Client

Firewall

Client

Internal Network

Server

Internet

Discovery Server

Firewall
DMZ

Internal Network

Figure 34 – Discovering Servers Behind a Firewall

1.05.04 99 OPC 10000-12: Discovery, Global Services

In this configuration the address of the Server that the Internet Client sees will be different from
the address that the internal Client sees. This means that the Server’s DiscoveryEndpoint would
return incorrect URLs to the Internet Client (assuming it was configured to provide the internal
URLs).

Administrators can correct this problem by configuring the Server to use multiple HostNames.
A Server that has multiple HostNames shall look at the EndpointUrl passed to the GetEndpoints
or CreateSession services and return EndpointDescriptions with URLs that use the same
HostName. A Server with multiple HostNames shall also return an Application Instance
Certificate that specifies the HostName used in the URL it returns. An Administrator may create
a single Certificate with multiple HostNames or assign different Certificates for each HostName
that the Server supports.

Note that Servers may not be aware of all HostNames which can be used to access the Server
(i.e. a NAT firewall) so Clients need to handle the case where the URL used to access the
Server is different from the HostNames in the Certificate. This is discussed in more detail in
OPC 10000-4.

Administrators may also wish to set up a DiscoveryServer that is configured with the
ApplicationDescriptions for Servers that are accessible to external Clients. This
DiscoveryServer would have to substitute its own Endpoint for the DiscoveryUrls in all
ApplicationDescriptions that it returns when a Client calls FindServers. This would tell the Client
to call the DiscoveryServer back when it wishes to connect to the Server. The DiscoveryServer
would then request the EndpointDescriptions from the actual Server as shown in Figure 35. At
this point the Client would have all the information it needs to establish a secure channel with
the Server behind the firewall.

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Discovery Server

FindServers()

ServerDescription[]

GetEndpoints()

EndpointDescription[]

Figure 35 – Using a Discovery Server with a Firewall

In this example, the DiscoveryServer outside of the firewall allows the Administrator to close off
the Server’s DiscoveryEndpoints to every Client other than the DiscoveryServer. The
Administrator could eliminate that hole as well if it stored the EndpointDescriptions on the
DiscoveryServer. This allows an Administrator to configure a system in which no public access
is allowed to any application behind the firewall. The only access behind the firewall is via a
secure connection.

The DiscoveryServer could also be replaced with a DirectoryService that stores the
ApplicationDescriptions and/or the EndpointDescriptions for the Servers behind the firewalls.

OPC 10000-12: Discovery, Global Services 100 1.05.04

A.2 Resolving References to Remote Servers

The UA AddressSpace supports references between Nodes that exist in different Server
AddressSpace spaces. These references are specified with a ExpandedNodeId that includes
the URI of the Server which owns the Node. A Client that wishes to follow a reference to an
external Node should map the ApplicationUri onto an EndpointUrl that it can use. A Client can
do this by using the GlobalDiscoveryServer that knows about the Server. The process of
connecting to a Server containing a remote Node is illustrated in Figure 36.

Client Server 1 GDS Server 2

Browse

ExpandedNodeId

(ServerUri=‘Server 2’)

Find Discovery Server

QueryServers (ApplicationUri = ‘Server 2’)

ServerOnNetwork

GetEndpoints

EndpointDescriptions

CreateSession

Figure 36 – Following References to Remote Servers

If a GDS not available Client may use other strategies to find the Server associated with the
URI.

1.05.04 101 OPC 10000-12: Discovery, Global Services

Annex B
(normative)

NodeSet and Constants

B.1 NodeSet

The OPC UA NodeSet includes the complete Information Model defined in this document. It
follows the XML Information Model schema syntax defined in OPC 10000-6 and can thus be
read and processed by a computer program.

The complete Information Model Schema for this version of this document (including any
amendments and errata) can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Gds.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of this document can be found here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.Gds.NodeSet2.xml

The complete Information Model Schema includes many types which are only used in Service
Requests and Responses and should not be used by Servers to populate their Address Space.

B.2 Numeric Node Ids

This document defines Nodes which are part of the base OPC UA Specification. The numeric
identifiers for these Nodes are part of the complete list of identifiers defined in OPC 10000-6.

In addition, this document defines Nodes which are only used by GlobalDiscoveryServers.

The NamespaceUri for any GDS specific NodeIds is http://opcfoundation.org/UA/GDS/

The CSV released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Gds.NodeIds.csv

NOTE The latest CSV that is compatible with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.Gds.NodeIds.csv

http://opcfoundation.org/UA/GDS
http://www.opcfoundation.org/UA/schemas/1.05/Opc.Ua.Gds.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Gds.NodeIds.csv

OPC 10000-12: Discovery, Global Services 102 1.05.04

Annex C
(normative)

OPC UA Mapping to mDNS

C.1 DNS Server (SRV) Record Syntax

Annex C describes the OPC UA specific requirements which are above and beyond the more
general requirements of the mDNS specification.

mDNS uses DNS SRV records to advertise the services (a.k.a. the DiscoveryUrls for the
Servers) available on the network.

An SRV record has the form:

_service._proto.name TTL class SRV priority weight port target

service: the symbolic name of the desired service. For OPC UA this field shall be one of service
names for OPC UA which are defined in Table 115.

Table 115 – Allowed mDNS Service Names

Service Name Description

_opcua-tcp The DiscoveryUrl supports the OPC UA TCP mapping (see OPC 10000-6).
This name is assigned by IANA.

_opcua-tls The DiscoveryUrl supports the OPC UA WebSockets mapping (see OPC 10000-6).
Note that WebSockets mapping supports multiple encodings. If a Client supports more than
one encoding it should attempt to use the alternate encodings if an error occurs during
connect.
This name is assigned by IANA.

proto: the transport protocol of the desired service; For OPC UA this field shall be ‘_tcp’.

The other fields have no OPC UA specific requirements.

An example SRV record in textual form that might be found in a zone file might be the following:

_opcua-tcp._tcp.example.com. 86400 IN SRV 0 5 4840 uaserver.example.com.

This points to a server named uaserver.example.com listening on TCP port 4840 for OPC

UA TCP requests. The priority given here is 0, and the weight is 5 (the priority and weights are
not important for OPC UA). The mDNS specification describes the rest of the fields in detail.

C.2 DNS Text (TXT) Record Syntax

The SRV record has a TXT record associated with it that provides additional information about
the DiscoveryUrl. The format of this record is a sequence of strings prefixed by a length. This
specification adopts the key-value syntax for TXT records described in DNS-SD.

Table 116 defines the syntax for strings that may in the TXT record.

Table 116 – DNS TXT Record String Format

Key-Value Format Description

path=/<path> Specifies the text that appears after the port number when constructing a
URL. This text always starts with a forward slash (/).

caps=<capability1>,<capability2> Specifies the capabilities supported by the Server.
These are short (<=8 character) strings which are published by the OPC
Foundation (see Annex D). The number of capabilities supported by a
Server should be less than 10.

http://en.wikipedia.org/wiki/Zone_file

1.05.04 103 OPC 10000-12: Discovery, Global Services

The MulticastExtension shall convert DiscoveryUrls to and from these SRV records.

C.3 DiscoveryUrl Mapping

An DiscoveryUrl has the form:

scheme://hostname:port/path

scheme: the protocol used to establish a connection.

hostname: the domain name or IPAddress of the host where the Server is running.

port: the TCP port on which the Server is to be found.

path: additional data used to identify a specific Server.

Table 117 – DiscoveryUrl to DNS SRV and TXT Record Mapping

URL Field Mapping

scheme The scheme maps onto SRV record service field.
The following mappings are defined at this time:

opc.tcp _opcua-tcp._tcp.

opc.wss _opcua-tls._tcp.

https _opcua-https._tcp.

The first two are OPC UA service names assigned by IANA.
Additional service names may be added in the future.
The endpoint shall support the default transport profile for the scheme.

hostname The hostname maps onto the SRV record target field.
If the hostname is an IPAddress then it shall be converted to a domain name.
If this cannot be done then LDS shall report an error.

port The port maps onto the SRV record port field.

path The path maps onto the path string in the TXT record (see Table 116).

Suitable default values should be chosen for fields in a SRV record that do not have a mapping
specified in Table 117. e.g. TTL=86400, class=IN, priority=0, weight=5

OPC 10000-12: Discovery, Global Services 104 1.05.04

Annex D
(normative)

Server Capability Identifiers

Clients benefit if they have more information about a Server before they connect, however,
providing this information imposes a burden on the mechanisms used to discover Servers. The
challenge is to find the right balance between the two objectives.

CapabilityIdentifiers are the way this specification achieves the balance. These identifiers are
short and map onto a subset of OPC UA features which are likely to be useful during the
discovery process. The identifiers are short because of length restrictions for fields used in the
mDNS specification. Table 118 is a non-normative list of possible identifiers.

Table 118 – Examples of CapabilityIdentifiers

Identifier Description

NA No capability information is available. Cannot be used in combination with any other capability.

DA Provides current data.

HD Provides historical data.

AC Provides alarms and conditions that may require operator interaction.

HE Provides historical alarms and events.

GDS Supports the Global Discovery Server information model.

LDS The ApplicationType is DiscoveryServer. Only used by a standalone LDS implementation.

DI Supports the Device Integration (DI) information model (see DI).

ADI Supports the Analyser Device Integration (ADI) information model (see ADI).

FDI Supports the Field Device Integration (FDI) information model (see FDI).

FDIC Supports the Field Device Integration (FDI) Communication Server information model (see FDI).

PLC Supports the PLCopen information model (see PLCopen).

S95 Supports the ISA95 information model (see ISA-95).

RCP Accepts reverse connect requests as defined in OPC 10000-6.

PUB Supports the Publisher capabilities defined in OPC 10000-14.

PSC Supports the PubSub Configuration model defined in OPC 10000-14.

ALIAS Supports the Alias Names capabilities defined in OPC 10000-17.

SKS Supports the Security Key Server (SKS) capabilities defined in OPC 10000-14.

REGISTRAR Supports the Registrar model defined in OPC 10000-21.

DCA Supports the Device Configuration Application (DCA) model defined in OPC 10000-21.

The normative set of CapabilityIdentifiers can be found here:

http://www.opcfoundation.org/UA/schemas/ServerCapabilities.csv

This CSV will be changed to meet the needs of companion specifications and will not trigger an
update to this document. Application developers shall always use the linked CSV.

Applications that support the PUB capability can send PubSub Messages but may not support
the PubSub information model.

Client applications that support the RCP capability allow Servers to connect, however, they do
not support GetEndpoints Service.

http://www.opcfoundation.org/UA/schemas/ServerCapabilities.csv

1.05.04 105 OPC 10000-12: Discovery, Global Services

Annex E
(normative)

DirectoryServices

E.1 Global Discovery via Other Directory Services

Many organizations will deploy DirectoryServices such as LDAP or UDDI to manage resources
available on their network. A Client can use these services as a way to find Servers by using
APIs specific to DirectoryService to query for UA Servers or UA DiscoveryServers available on
the network. The Client would then use the URLs for DiscoveryEndpoints stored in the
DirectoryService to request the EndpointDescriptions necessary to connect to an individual
servers

Some implementations of a GlobalDiscoveryServer will be a front-end for a standard Directory
Service. In these cases, the QueryApplications method will return the same information as the
DirectoryService API. The discovery process for this scenario is illustrated in Figure 37.

GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

UDDI or LDAP

Server

Query()

BusinessEntity/Object[]

Figure 37 – The UDDI or LDAP Discovery Process

E.2 UDDI

UDDI registries contain businessEntities which provide one or more businessServices. The
businessServices have one or more bindingTemplates. bindingTemplates specify a physical
address and a Server Interface (called a tModel). Figure 38 illustrates the relationships between
the UDDI registry elements.

OPC 10000-12: Discovery, Global Services 106 1.05.04

Logical Node

(businessEntity)

UA Server

(businessService)

DiscoveryEndpointUrl

(bindingTemplate)

UA Server Interface

(tModel)

UA Discovery Server

(businessService)

DiscoveryEndpointUrl

(bindingTemplate)

UA Discovery Interface

(tModel)

Figure 38 – UDDI Registry Structure

This specification defines standard tModels which shall be referenced by businessServices that
support UA. The standard UA tModels shown in Table 119.

Table 119 – UDDI tModels

Name domainKey uuidKey

Server uddi:server.ua.opcfoundation.org uddi:AA206B41-EC9E-49a4-B789-
4478C74120B5

DiscoveryServer uddi:discoveryserver.ua.opcfoundation.org uddi:AA206B42-EC9E-49a4-B789-
4478C74120B5

The name of the businessService elements should be the same as the ApplicationName for the
UA application. The serviceKey shall be the ApplicationUri. At least one bindingTemplate shall
be present and the accessPoint shall be the URL of the DiscoveryEndpoint for the UA server
identified by the serviceKey. Servers with multiple DiscoveryEndpoints would have multiple
bindingTemplates

A UDDI registry will generally only contain UA servers, however, there are situations where the
administrators cannot know what Servers are available at any given time and will find it more
convenient to place a DiscoveryServer in the registry instead.

E.3 LDAP

LDAP servers contain objects organized into hierarchies. Each object has an objectClass which
specifies a number of attributes. Attributes have values which describe an object. Figure 39
illustrates a sample LDAP hierarchy which contains entries describing UA servers.

1.05.04 107 OPC 10000-12: Discovery, Global Services

Root

(objectClass=top)

Company

(objectClass=organization)

Machine X

(objectClass=device)

Machine Y

(objectClass=device)

UA Server

(objectClass=OPCUA-Server)

UA Discovery Server

(objectClass=OPCUA-Server)

IsDiscoveryServer=False IsDiscoveryServer=True

Figure 39 – Sample LDAP Hierarchy

UA applications are stored in LDAP servers as entries with the UA defined objectClasses
associated with them. The schema for the objectClasses defined for UA are shown in Table
120.

Table 120 – LDAP Object Class Schema

Name LDAP Name Type OID

Application opcuaApplication Structural 1.2.840.113556.1.8000.2264.1.12.1

 ApplicationName cn String (Required) Built-in

 HostName dNSName String Built-in

 ApplicationUri opcuaApplicationUri Name 1.2.840.113556.1.8000.2264.1.12.1.1

 ApplicationType opcuaApplicationType Boolean 1.2.840.113556.1.8000.2264.1.12.1.3

 DiscoveryUrl opcuaDiscoveryUrl String, Multi-valued 1.2.840.113556.1.8000.2264.1.12.1.4

This OID is globally unique and can use used with any LDAP implementation.

Administrators may extend the LDAP schema by adding new attributes.

OPC 10000-12: Discovery, Global Services 108 1.05.04

Annex F
(normative)

Local Discovery Server

F.1 Certificate Store Directory Layout

A recommended directory layout for Applications that store their Certificates on a file system is
shown in Table 121. The Local Discovery Server shall use this structure.

This structure is based on the rules defined in OPC 10000-6.

Table 121 – Application Certificate Store Directory Layout

Path Description

<root> A descriptive name for the TrustList.

<root>/own The Certificate store which contains private keys used by the application.

<root>/own/certs Contains the X.509 v3 Certificates associated with the private keys in the ./private
directory.

<root>/own/private Contains the private keys used by the application.

<root>/trusted The Certificate store which contains trusted Certificates.

<root>/trusted/certs Contains the X.509 v3 Certificates which are trusted.

<root>/trusted/crl Contains the X.509 v3 CRLs for any Certificates in the ./certs directory.

<root>/issuer The Certificate store which contains the CA Certificates needed for validation.

<root>/issuer/certs Contains the X.509 v3 Certificates which are needed for validation.

<root>/issuer/crl Contains the X.509 v3 CRLs for any Certificates in the ./certs directory.

<root>/rejected The Certificate store which contains certificates which have been rejected.

<root>/rejected/certs Contains the X.509 v3 Certificates which have been rejected.

All X.509 v3 certificates are stored in DER format and have a ‘.der’ extension on the file name.

All CRLs are stored in DER format and have a ‘.crl’ extension on the file name.

Private keys should be in PKCS #12 format with a ‘.pfx’ extension or in the OpenSSL PEM
format. The OpenSSL PEM format is not formally defined and should only be used by
applications which use the OpenSSL libraries to implement security. Other private key formats
may exist.

The base name of the Private Key file shall be the same as the base file name for the matching
Certificate file stored in the ./certs directory.

A recommended naming convention is:

<CommonName>-[<Algorithm>-<Thumbprint>].(der | pem | pfx)

Where the CommonName is the CommonName of the Certificate , the Algorithm is the key-pair
algorithm and the Thumbprint is the CertificateDigest of the certificate formatted as a
hexadecimal string.

The currently supported key-pair algorithms are: RSA, nistP256, nistP384, brainpoolP256r1,
brainpoolP384r1, curve25519 and curve448.

F.2 Installation Directories on Windows

The LocalDiscoveryServer executable shall be installed in the following location:

%CommonProgramFiles%\OPC Foundation\UA\Discovery

where %CommonProgramFiles% is the value of the CommonProgramFiles environment
variable on 32-bit systems. On 64-bit systems the value of the CommonProgramFiles(x86)
environment variable is used instead.

1.05.04 109 OPC 10000-12: Discovery, Global Services

The configuration files used by the LocalDiscoveryServer executable shall be installed in the
following location:

%CommonApplicationData%\OPC Foundation\UA\Discovery

where %CommonApplicationData% is the location of the application data folder shared by all
users. The exact location depends on the operating system, however, under Windows 7 or later
the common application data folder is usually C:\ProgramData.

The certificates stores used by the LocalDiscoveryServer shall be organized as described in
F.1. The root of the certificates stores shall be in the following location:

%CommonApplicationData%\OPC Foundation\UA\pki

OPC 10000-12: Discovery, Global Services 110 1.05.04

Annex G
(normative)

Application Setup

G.1 Application Setup with PullManagement

Applications that use PullManagement (see 7.3) to setup their configuration need to know the
location of the CertificateManager which they can use to request Certificates and download
TrustLists. This location may be auto-discovered via mDNS by looking for Servers with the GDS
capability (see Annex D) or by providing a URL via and out of band mechanism such as e -mail
or a web page.

Once the location is known the Application can connect to the CertificateManager and establish
a SecureChannel. The Application may choose to connect even if it has not been pre-configured
to trust the CertificateManager, however, Applications should not provide any secret information
to a CertificateManager that is not trusted.

After establishing a SecureChannel with the CertificateManager, the Application needs
demonstrate that it has permission to request Certificates and TrustLists. This permission may
be granted if the CertificateManager is pre-configured with CAs and/or Certificates used by
Applications on the network (see OPC 10000-21).

Permissions can also be granted if the Application provides user credentials that give it
ApplicationAdmin rights (see 7.2). If the CertificateManager is not pre-configured to be trusted
by the Application then the Application shall not provide any secrets, such as passwords, to the
CertificateManager. It may use UserIdentityTokens, such as X509IdentityTokens, that do not
require a secret to be sent to a potentially malicious CertificateManager.

If an Application prompts the user to enter the credentials to use it shall not persist these
credentials for use in the future.

A CertificateManager may accept a CertificateRequest from unknown Applications that provide
anonymous credentials if there is a process for manual review by a CertificateManager
administrator. The Certificate is not issued until the CertificateRequest is approved.

Once an Application has received its first Certificate then the Certificate can be used in lieu of
user credentials when the Application needs to renew its Certificate or update its TrustList.

G.2 Application setup with the PushManagement

Servers that use PushManagement (see 7.4) to initialize their configuration shall have a default
Certificate assigned before the PushManagement process can start.

In addition, Servers shall go into an application setup state (for example, see OPC 10000-21)
that makes it possible for remote Clients to update the security configuration via the
ServerConfiguration Object (see 7.10.3). When a Server is in the application setup state it shall
limit the available functionality. The value of the ServerState Property shall be NoConfiguration.

It is good practice for a Client to always check the ServerState after creating a Session. If the
ServerState is NoConfiguration then the Client should check the InApplicationSetup Property
on the ServerConfiguration Object to confirm that the Server is in the application setup state.

In some cases, cached user credentials will no longer work because of Server has been reset.
Clients can determine that the Server is in the Application Setup state by reconnecting using
Anonymous user credentials and checking the ServerState Property.

Once a Server has been configured it automatically leaves the application setup state. This
step is necessary to ensure that security is not compromised.

A possible workflow for implementing the Application Setup state is:

1. A flag in the configuration file that defaults to ON;

1.05.04 111 OPC 10000-12: Discovery, Global Services

2. Always allow Clients to connect securely and assign the SecurityAdmin Role to
Anonymous user if the TrustList is empty;

3. Connect to the Server after toggling a physical switch on the device which enables
access for a short period.

4. Add Client ApplicationUri to SecurityAdmin Role, remove Anonymous from
SecurityAdmin Role;

5. Provide a new Certificate and TrustList;

6. Set the configuration flag to OFF.

Subsequent updates to TrustLists or Certificates can be allowed if the Client has a trusted
Certificate and has access to the SecurityAdmin Role. During the setup state the Client shall
configure the SecurityAdmin Role. If the Client fails to do this Server shall stay in application
setup state.

In some cases, the Application distributor or installer will know the CA used to sign the
Certificate used by the CertificateManager and can add this CA to the Application’s TrustList
during installation. If practical, this approach provides the best protection against accidental
configuration by malicious Clients.

If the device is automatically discovered by the CertificateManager the CertificateManager
needs some way to ensure that the device belongs on the network. The manufacturer can
provide a unique ApplicationInstance Certificate during manufacture and provide the serial
numbers to the device installer. The installer would then register the serial number or Certificate
with the CertificateManager. When the CertificateManager discovers the device it would check
that the Certificate is for one of the pre-authorized devices and continue with automatic
onboarding of the device. OPC 10000-21 formally defines mechanisms for onboarding new
devices when they are connected to the network.

G.3 Setting Permissions

If a Private Key is stored on a regular file system it shall be protected from unauthorized access.
This is best done by setting operating system permissions on the private key file that deny
read/write access to anyone who is not using an account authorized to run the Application.

In some cases, additional protection can be added by protecting the Private Key with a
password. Saving Private Key passwords in files should be avoided. This mode may also work
in conjunction with “smart cards” that use hardware to protect the Private Key.

In addition to the Private Key, Applications shall be protected from unauthorized updates to
their TrustList. This can also be done by setting operating system permissions on the directory
where the TrustList is stored that deny write access to anyone who is not using an account
authorized to administer the Application.

Finally, Applications may depend on one or more configuration files and/or databases which tell
them where their TrustList and Private Key can be found. The source of any security related
configuration information shall be protected from unauthorized updates. The exact mechanism
used to implement these protections depends on the source of the information.

OPC 10000-12: Discovery, Global Services 112 1.05.04

Annex H
(informative)

Comparison with RFC 7030

H.1 Overview

RFC 7030 (Enrolment over Secure Transport or EST) defines a mechanism for the distribution
of Certificates to devices. This appendix summarizes the capabilities provided by EST and how
the same capabilities are provided by the CertificateManager defined in 7.

H.2 Obtaining CA Certificates

In EST a web operation returns the CA certificates. In OPC UA the CA Certificates are returned
when the CertificateManager client reads the TrustList assigned to the application from the
CertificateManager. Prior to these operations the Client should verify that the server is
authorized to provide CAs. Table 122 compares how EST clients verify the EST server with how
CertificateManager clients verify a CertificateManager.

Table 122 – Verifying that a Server is allowed to Provide Certificates

EST OPC UA

Compare the URL for the EST server with the HTTPS
certificate returned in the TLS handshake.

Compare the URL for the CertificateManager with the
OPC UA Certificate returned in GetEndpoints.

Preconfigure the client to trust the EST Server’s
HTTPS certificate.

Preconfigure the client by adding the
CertificateManager Certificate to the client TrustList.

Manual approval of the CA Certificate after comparing
the certificate with out of band information.

Manual approval of the CertificateManager Certificate
after comparing the Certificate with out of band
information.

Pre-shared credentials for use with certificate-less
TLS.

No equivalent.

H.3 Initial Enrolment

In EST a web operation is used to enrol a client. The EST server authenticates and authorizes
the EST client before allowing the operation to proceed. In OPC UA, a Method is used to request
a Certificate. The CertificateManager also authenticates and authorizes the client before
allowing the operation to proceed. Table 123 compares how EST servers verify the EST client
with how a CertificateManager verifies a CertificateManager client.

Table 123 – Verifying that a Client is allowed to request Certificates

EST OPC UA

TLS with a client certificate which is previously issued
by the EST server.

The CertificateManager client has a previously
certificate previously issued by the GDS.

TLS with a previously installed certificate which is
trusted by the EST server.

The CertificateManager client has a certificate which
is trusted by the CertificateManager.

Shared credentials distributed out of band which are
used for certificate-less TLS.

No equivalent.

HTTPS username/password authentication. The CertificateManager client provides appropriate
user credentials when it establishes the session.

H.4 Client Certificate Reissuance

In EST a certificate issued by the EST server can be used as an HTTPS client certificate. This
can be used to authorize the re-issue of the certificate. In OPC UA a certificate issued by the

1.05.04 113 OPC 10000-12: Discovery, Global Services

GDS can be used to establish a secure channel. This would then allow the GDS client to request
that the certificate be re-issued.

In both EST and OPC UA clients can fall back to the authentication mechanisms used for Initial
Enrolment if it is not possible to use the current certificate to establish a secure channel with
the server.

H.5 Server Key Generation

Both EST and OPC UA allow clients to request new private keys. Both specifications require
that encryption be used when returning private key data.

EST allows clients to explicitly request that separate encryption be applied to the private key.
The algorithms are specified in the CSR (certificate signing request).

OPC UA allows clients to password protect the key (which uses encryption), however, OPC UA
does not allow the client to directly specify the algorithm used. That said, the envelope used to
transport private keys can be specified with the PrivateKeyFormat parameter and the set of
envelope formats supported by the CertificateManager is published in the AddressSpace. It is
expected that the envelope format will specify the algorithms used either by explicitly encoding
the algorithm within the envelope or as part of the definition of the envelope.

H.6 Certificate Signing Request (CSR) Attributes Request

EST allows the client to request the list of CSR attributes the EST server supports. The
attributes can indicate what additional metadata the client can provide or the algorithms that
will be used.

In OPC UA the CSR metadata required is fixed by the specification and there is no mechanism
to publish extensions. Clients are free to include additional metadata in the CSR, however, the
CertificateManager may ignore it.

There is no mechanism in OPC UA to publish the algorithms which need to be used for the CSR,
however, the CertificateManager will reject CSRs that do not meet its requirements.

	1 Scope
	2 Normative references
	3 Terms, definitions, and conventions
	3.1 Terms and definitions
	3.2 Abbreviations and symbols

	4 The Discovery Process
	4.1 Overview
	4.2 Registration and Announcement of Applications
	4.2.1 Overview
	4.2.2 Hosts with a LocalDiscoveryServer
	4.2.3 Hosts without a LocalDiscoveryServer

	4.3 The Discovery Process for Clients to Find Servers
	4.3.1 Overview
	4.3.2 Simple Discovery with a DiscoveryUrl
	4.3.3 Local Discovery
	4.3.4 MulticastSubnet Discovery
	4.3.5 Global Discovery
	4.3.6 Combined Discovery Process for Clients

	4.4 The Discovery Process for Reverse Connections
	4.4.1 Overview
	4.4.2 Out-of-band Discovery
	4.4.3 Global Discovery for Reverse Connections

	5 Local Discovery Server
	5.1 Overview
	5.2 Security Considerations for Multicast DNS
	5.3 Network Architectures
	5.3.1 Overview
	5.3.2 Single MulticastSubnet
	5.3.3 Multiple MulticastSubnet
	5.3.4 No MulticastSubnet
	5.3.5 Domain Names and MulticastSubnets

	6 Global Discovery Server
	6.1 Overview
	6.2 Roles and Privileges
	6.3 Client connections to global services
	6.4 Local Discovery
	6.5 Application Registration Workflow
	6.6 Information Model
	6.6.1 Overview
	6.6.2 Directory
	6.6.3 DirectoryType
	6.6.4 FindApplications
	6.6.5 ApplicationRecordDataType
	6.6.6 RegisterApplication
	6.6.7 UpdateApplication
	6.6.8 UnregisterApplication
	6.6.9 GetApplication
	6.6.10 QueryApplications
	6.6.11 QueryServers (deprecated)
	6.6.12 ApplicationRegistrationChangedAuditEventType

	7 Certificate Management
	7.1 Overview
	7.2 Roles and Privileges
	7.3 Pull Management
	7.4 Push Management
	7.5 Application Setup
	7.6 Pull Management Workflow
	7.7 Push Management Workflow
	7.8 Common Information Model
	7.8.1 Overview
	7.8.2 TrustLists
	7.8.2.1 TrustListType
	7.8.2.2 OpenWithMasks
	7.8.2.3 CloseAndUpdate
	7.8.2.4 AddCertificate
	7.8.2.5 RemoveCertificate
	7.8.2.6 TrustListDataType
	7.8.2.7 TrustListMasks
	7.8.2.8 TrustListValidationOptions
	7.8.2.9 TrustListOutOfDateAlarmType
	7.8.2.10 TrustListUpdateRequestedAuditEventType
	7.8.2.11 TrustListUpdatedAuditEventType

	7.8.3 CertificateGroups
	7.8.3.1 CertificateGroupType
	7.8.3.2 GetRejectedList
	7.8.3.3 CertificateGroupFolderType

	7.8.4 CertificateTypes
	7.8.4.1 CertificateType
	7.8.4.2 ApplicationCertificateType
	7.8.4.3 HttpsCertificateType
	7.8.4.4 RsaMinApplicationCertificateType
	7.8.4.5 RsaSha256ApplicationCertificateType
	7.8.4.6 EccApplicationCertificateType
	7.8.4.7 EccNistP256ApplicationCertificateType
	7.8.4.8 EccNistP384ApplicationCertificateType
	7.8.4.9 EccBrainpoolP256r1ApplicationCertificateType
	7.8.4.10 EccBrainpoolP384r1ApplicationCertificateType
	7.8.4.11 EccCurve25519ApplicationCertificateType
	7.8.4.12 EccCurve448ApplicationCertificateType

	7.9 Information Model for Pull Certificate Management
	7.9.1 Overview
	7.9.2 CertificateDirectoryType
	7.9.3 StartSigningRequest
	7.9.4 StartNewKeyPairRequest
	7.9.5 FinishRequest
	7.9.6 RevokeCertificate
	7.9.7 GetCertificateGroups
	7.9.8 GetCertificates
	7.9.9 GetTrustList
	7.9.10 GetCertificateStatus
	7.9.11 CheckRevocationStatus
	7.9.12 CertificateRequestedAuditEventType
	7.9.13 CertificateDeliveredAuditEventType

	7.10 Information Model for Push Certificate Management
	7.10.1 Overview
	7.10.2 Transaction Lifecycle
	7.10.3 ServerConfiguration
	7.10.4 ServerConfigurationType
	7.10.5 UpdateCertificate
	7.10.6 GetCertificates
	7.10.7 ApplyChanges
	7.10.8 CreateSigningRequest
	7.10.9 CancelChanges
	7.10.10 GetRejectedList
	7.10.11 ResetToServerDefaults
	7.10.12 ApplicationConfigurationType
	7.10.13 ApplicationConfigurationFolderType
	7.10.14 ManagedApplications
	7.10.15 TransactionDiagnosticsType
	7.10.16 TransactionErrorType
	7.10.17 CertificateUpdateRequestedAuditEventType
	7.10.18 CertificateUpdatedAuditEventType

	8 KeyCredential Management
	8.1 Overview
	8.2 Roles and Privileges
	8.3 Pull Management
	8.4 Push Management
	8.5 Information Model for Pull Management
	8.5.1 Overview
	8.5.2 KeyCredentialManagementFolderType
	8.5.3 KeyCredentialManagement
	8.5.4 KeyCredentialServiceType
	8.5.5 StartRequest
	8.5.6 FinishRequest
	8.5.7 Revoke
	8.5.8 KeyCredentialAuditEventType
	8.5.9 KeyCredentialRequestedAuditEventType
	8.5.10 KeyCredentialDeliveredAuditEventType
	8.5.11 KeyCredentialRevokedAuditEventType

	8.6 Information Model for Push Management
	8.6.1 Overview
	8.6.2 KeyCredentialConfigurationFolderType
	8.6.3 CreateCredential
	8.6.4 KeyCredentialConfiguration
	8.6.5 KeyCredentialConfigurationType
	8.6.6 GetEncryptingKey
	8.6.7 UpdateCredential
	8.6.8 DeleteCredential
	8.6.9 KeyCredentialUpdatedAuditEventType
	8.6.10 KeyCredentialDeletedAuditEventType

	9 AuthorizationServices
	9.1 Overview
	9.2 Roles and Privileges
	9.3 Implicit
	9.4 Explicit
	9.5 Chained
	9.6 Information Model for Requesting Access Tokens
	9.6.1 Overview
	9.6.2 AuthorizationServicesFolderType
	9.6.3 AuthorizationServices
	9.6.4 AuthorizationServiceType
	9.6.5 RequestAccessToken
	9.6.6 GetServiceDescription
	9.6.7 AccessTokenIssuedAuditEventType

	9.7 Information Model for Configuring Servers
	9.7.1 Overview
	9.7.2 AuthorizationServiceConfigurationFolderType
	9.7.3 AuthorizationServices
	9.7.4 AuthorizationServiceConfigurationType

	10 Namespaces
	10.1 Namespace Metadata
	10.2 Handling of OPC UA Namespaces

	Annex A (informative) Deployment and Configuration
	A.1 Firewalls and Discovery
	A.2 Resolving References to Remote Servers

	Annex B (normative) NodeSet and Constants
	B.1 NodeSet
	B.2 Numeric Node Ids

	Annex C (normative) OPC UA Mapping to mDNS
	C.1 DNS Server (SRV) Record Syntax
	C.2 DNS Text (TXT) Record Syntax
	C.3 DiscoveryUrl Mapping

	Annex D (normative) Server Capability Identifiers
	Annex E (normative) DirectoryServices
	E.1 Global Discovery via Other Directory Services
	E.2 UDDI
	E.3 LDAP

	Annex F (normative) Local Discovery Server
	F.1 Certificate Store Directory Layout
	F.2 Installation Directories on Windows

	Annex G (normative) Application Setup
	G.1 Application Setup with PullManagement
	G.2 Application setup with the PushManagement
	G.3 Setting Permissions

	Annex H (informative) Comparison with RFC 7030
	H.1 Overview
	H.2 Obtaining CA Certificates
	H.3 Initial Enrolment
	H.4 Client Certificate Reissuance
	H.5 Server Key Generation
	H.6 Certificate Signing Request (CSR) Attributes Request

