FOUNDATION

OPC 10000-4

OPC Unified Architecture

Part 4: Services

Release 1.05.04
2024-10-15

uoneo1oads vn 0dO

Specification
Type:

Title:

Version:

Author:

Industry Standard
Specification

OPC Unified
Architecture

Part 4 :Services

Release 1.05.04

OPC Foundation

Comments:

Date:

Software:
Source:

Status:

2024-10-15

MS-Word

OPC 10000-4 - UA Specification
Part 4 - Services 1.05.04.docx

Release

OPC 10000-4: Services i 1.05.04

CONTENTS

1 ST o] o T PP 1
2 N Lo] 0 0= LA =T = =T = L= 1 1
3 Terms, definitions, abbreviated terms and CONVENLIONScccvviiiiiiiiii e 2
3.1 Terms and definitioNS 2
3.2 A VAL TEIMIS ettt 3
3.3 Conventions for Service definitionNs ..o 4

O © 1Y Y YT 5
4.1 SErVICE St MO ..o 5
4.2 Request/response Service ProCEUUIESiuiiiit ittt e e aae e 8

5 S BV SIS uiiiitiiii i e e 8
5.1 L= 1= = | 8
5.2 Service request and response NEAAENveviii it 8
5.3 S BIVICE TESUIS ittt e e 9
5.4 Locale NEGOLIALIONuieei et 10
5.5 DiSCOVEIY SEIVICE SO ettt ettt 10
5.5.1 L@ N YT 10
5.5.2 FINO S BV S et e 12
5.5.3 FINASErverSONNEIWOIKiii e 13
5.5.4 GEEENUAPOINTS ..ottt e e e et et ettt e 14
5.5.5 L ETo L1 =T RS Y= V7= 16
5.5.6 LYo L1 =T RS T=T V7] 22 18

5.6 SecureChannel SEerviCe Sl ... 19
5.6.1 L@ N Y T 19
5.6.2 OPENSECUIECRANNELt it 21
5.6.3 CloSeSECUreChNANNEl ..o 23

5.7 SBSSION SBIVICE SOl ittt e e 24
57.1 OV BV B W ittt e 24
5.7.2 AL E S S S 0N Lttt e 24
5.7.3 ATV AL S S S 0N ittt 29
5.7.4 (0 [0 1Y =301 =T7 =] 0 o [31
5.7.5 NG et 32

5.8 NOodeManagemMeENt SEIVICE SEL ...t 32
5.8.1 L@ N YT 32
5.8.2 AGAN OGBS oot e et 32
5.8.3 AR B EIENCES .o 34
5.8.4 DBlBIEN S ...ttt 36
5.8.5 DeletEREEIBNCES . iv i 37

5.9 VW S BIVICE SO ettt e 38
5.9.1 (@ 17T VT 38
5.9.2 Bl O S ettt 38
5.9.3 Bl OWS N O XL ettt ittt 40
5.9.4 TranslateBrowsePathsToNodeldsccooiiiiiiiii e 42
5.9.5 S0 T3 (=T 1N [Yo 1= 44

5.9.6 LU o] =0 TSy €1 o AN o o 1 45

1.05.04 iii OPC 10000-4: Services

5,10 QUETY SEIVICE SOl ..ttt ettt ettt 45
5.10.1 OV BIVIBW ettt ettt ettt et et e et e et e e e 45
5.10.2 QUETYING VIBWS Lttt e e e e ettt et et et e et e et e en e enees 46
5.10.3 O U] o | £ PP UPT PP UPTUPPTRIN 46
5.10.4 QUETYIN XL ettt ettt e 50

5,11 AMIIDULE SEIVICE SOt .o 51
5.11.1 OV BIVIBW ettt ettt ettt e e et e et e e e 51
5.11.2 REAM .. 51
5.11.3 [1S (0] Y/ == (o 53
5.11.4 L 1 TP 56
5.11.5 HISTOrYUPAAte ..o 58

5.12 MethOd SErVICE Sel ... iiuiiiiiiiiiii e 59
5.12.1 (@ 1= VT 59
5.12.2 (02 || PP TP 60

5.13 MonitoredIitem SErVICE ST ...t 63
5.13.1 MonitoredItem MOloouiiii e 63
5.13.2 CreateMoNItOredItEIMS ... e e 68
5.13.3 MOdifyMONITOrEdItEIMS ...uiie e 70
5.13.4 SetMONItONINGMOUE ... e 72
5.13.5 Y=l g Lo o T=] g1 o PP UPTUPTPTRIN 73
5.13.6 DeleteMOoNItOredItEmMS ... i 74

5.14 SUDSCrIPLiON SEerVICE SOl ..ot e 75
5.14.1 SUDSCIPLION MOAEI ...iie e 75
5.14.2 Create SUDSCIIPLION L. 81
5.14.3 MOifY SUDSCIIPIION ..t 83
5.14.4 SetPUublishiNgMOde 84
5.14.5 PUDIISI . .. 86
5.14.6 REPUDIISN .o 88
5.14.7 TransferSUDSCIIPLIONS ... e 88
5.14.8 DeleteSUDSCIIPLIONS ...t 90

B SErViCe DENAVIOUIS ..o 91

6.1 1= o U 1 41T 91
6.1.1 (O 7T VT PP UPRPTPRPT 91
6.1.2 Obtaining and installing an Application Instance Certificate.............c..ccooeevnin 91
6.1.3 Determining if a Certificate iS trustedcooiiiiiiii e 92
6.1.4 Creating a SecureChannelo 96
6.1.5 Creating @ SESSION . cu it it 98
6.1.6 IMPErsONatiNg @ USEIiuiieiiiii e e eaas 98
6.1.7 ContinuoUs SECUTitY CheCKS ...t 99

6.2 AULNOTIZAtION SEIVICES ... et 99
6.2.1 (@ 17T VT 99
6.2.2 Indirect handshake with an Identity Providerccoooiiiiiiiiiieen, 99
6.2.3 Direct handshake with an Identity Provider............ccoocoiiiiiiiiiniee, 100

6.3 SeSSioN-1eSS Service INVOCATION .. .c.uuiiiii it 101
6.3.1 DS I PO et 101
6.3.2 ParamMeterS .. ot 102
6.3.3 SEIVICE FTESUILS et e 102

6.4 Software CertifiCates ... 103

6.5 8 Lo 1 41 o 103

OPC 10000-4: Services iv 1.05.04

6.5.1 L@ AT VTP 103
6.5.2 General Uit [0gS .. . 103
6.5.3 General aUdit EVENTS 103
6.5.4 Auditing for DISCOVEIY SEIVICE St ...iiuiiiiiiiiiiiiii e 103
6.5.5 Auditing for SecureChannel Service Set........coiiiiiiii i 103
6.5.6 Auditing for SESSION SErviCe Setl.....ociiiiiiiii e 104
6.5.7 Auditing for NodeManagement Service Setccovoviiiiiiiiiiiiiiine e 104
6.5.8 Auditing for Attribute Service Set ..o 104
6.5.9 Auditing for Method Service Set......cciiiiiiiiii e 105
6.5.10 Auditing for View, Query, Monitoredltem and Subscription Service Set 105
6.6 L= o [o = U Vo 105
6.6.1 ReEAUNTANCY OVEIVIBW ..ttt et e ea e eees 105
6.6.2 Y= V=Tl = L= To U1 g o - o oY 2 106
6.6.3 ClieNt REAUNANCY ... et ea e 116
6.6.4 NetWOork REAUNAANCYiviieiiiie e 116
6.6.5 Manually FOrcing FailOVer ..o 117
6.7 Re-establishing CONNECTIONS ...t 118
6.8 Durable SUDSCIIPLIONS ...iui e e 119
7 Common parameter type definitionNS ... 120
7.1 AdditionalParameterSTYPE .o 120
7.2 APPICAtiOND ESCIIPTION ...t et 121
7.3 ApplicationInstanCceCertifiCateoooiiiiii 121
7.4 2N o o1 T ot= 1 T] 1 154 1 122
7.5 BrOWSEDIITECHION L. e 122
7.6 BrOWSERESUIL ...t e 122
7.7 CONEENEFIILET et e 123
7.7.1 ContentFIlter StTUCTUIE ...eie e e e ees 123
7.7.2 ContentFIEIRESUIT ... e 123
7.7.3 FIEEIOPEIATON ..ottt 124
7.7.4 FilterOperand parameters ...t 131
7.8 10701014] (=T PP PP 132
7.9 CoNtINUALIONP OINT .. e 133
7.10 DataChange T ligger e ittt ettt ettt 133
00 5 R I - Y - 1 = 1T 134
7.11.1 GBNBIAL . 134
7.11.2 PICOSECONAS .. 134
7.11.3 SOUFCETIMESTAIMP L.ttt e s 134
7.11.4 S IV TIMESTAIMP ..ttt et et en e ea e 134
7.11.5 StatusCode assigned t0 @ ValUeooeuiiiiiiiii e 135
T7.12 DiIiagnOSHCINTO .. 135
7.13 DiscoveryConfiguration Parametersoiu. i 136
7.13.1 L@ 17T VT 136
7.13.2 MdnsDiscoveryConfigurationoooviiiiiii e 136
7.14 ENAPOiNtD @S CIIPtION L.eeitiit i 137
7.15 EPREMEralK ey Ty P ittt 137
7.16 EXPandedNOAeldo 138
7.17 EXteNSIDIEParameter .. .o 138
A T 1 o [PP 138

208 X T 1 1 (=Y o =T o o 138

1.05.04 \Y; OPC 10000-4: Services

7.20 MeSSAQgeSECUItYMOUE ..ottt 139
7.21 MONItOINGPAraMELEIS ..ottt 139
7.22 MONitoringFilter ParameterS e 140
7.22.1 L@ AT VTP 140
7.22.2 DataChangeFilter 141
7.22.3 BV N I T e 141
7.22.4 o o | =T F= L= 1= 143
7.23 MONITOFINGMOTE. ... ettt 144
7.24 NOAEAUIDULES ParamMelerS ...t 145
7.24.1 L@ Y= Y=L PP 145
7.24.2 ODbjecCtAttribUtES PAramMELer ... 146
7.24.3 VariableAttributes parameter.o 146
7.24.4 MethodALtrbULES PAramMELEr ... cou i 147
7.24.5 ObjectTypeAttributes parameter........cocoviii i 147
7.24.6 VariableTypeAttributes parameter.......cccooeiiii i 147
7.24.7 ReferenceTypeAttributes parametercooviiiiiiii i 148
7.24.8 DataTypeAttributes parametercoii i 148
7.24.9 VIEWALHDULES PAramMELEr . vttt 148
7.24.10 GeneriCALribULtEeS ParamMeteroiviiii i 149
7.25 NotificationData PArameEtersoeuiiuiiii e 149
7.25.1 L@ A= VT 149
7.25.2 DataChangeNotification parameter..........ccccoiviiiiiii e, 149
7.25.3 EventNotificationList parameter........cooviiiiiiii 150
7.25.4 StatusChangeNotification parametercooeiiiiiiic e, 150
7.26 NOtfICAtIONMESSAGE .. ittt 151
A A 1N [V 4 1= o = U Yo = 151
T.28 QUEIY D A A S O Lttt 152
7.29 REAAVAIUEBIA ... e 152
7.30 ReferenCeDeSCIiPlION ..o 153
7.31 RelatiVePath. ... 154
R YA =T o 113 (=T =T IS T=T =T 155
7.33 REQUESTHEAUEY ... e 155
7.34 RESPONSEHEAUET ... ettt 158
7.35 SeIVICEFAUIL .. e 158
7.36 SessSionAUthenticatioONTOKEN ... e e 158
T7.37 SIONATUIEDALA . e 159
7.38 SignedSoftwareCertifiCateo 160
A 1 TS - 1 11 11 @ Lo = 160
7.39.1 GBNBIAL . 160
7.39.2 CommON StAtUSCOUES ..vuieiiiiit i e e r e e eees 162
7.40 TimesStamPSTOREIUIN ...t e 166
7.41 Userldentity TOKEN ParameterS i 166
7.41.1 (O =T VT PP 166
7.41.2 Token Encryption and Proof of POSSESSIioNcocoieiiiiiiiiiiii 167
7.41.3 ANoNyMoUSIdentity TOKEN ... e 171
7.41.4 UserNameldentity TOKENc.ie e 171
7.41.5 D112 Lo 1=T o112 o= 1 172
7.41.6 I1SSUEAIAENTItY TOKEN ..t 173

T.42 USEITOKENPOICY ivuiinii i e e e e 173

OPC 10000-4: Services Vi 1.05.04

FA S I O 1= o] (=T ol Y o= S PP TP UPTUPTPPI 174
A VA= £ To T ol 1 4T PP 174
T.A5 VIEWDESCIIPLION Lottt e et 174
Annex A (informative) BNF definitioNs ... 176
Al OVEIVIEW OVEN BNF .ot e 176
A.2 BNF Of RelatiVEP AN ... e 176
A.3 BNF Of NUMEICRANGE ... ittt e 177
Annex B (informative) ContentFilter and QuUery examplescooviiiiiiiiiiiiiiie e 178
B.1 Simple ContentFilter eXamples 178
B.1.1 OV EBIVIBW ettt ettt et et et e e e et e e e e 178
B.1.2 EXAMIPIE Lo 178
B.1.3 EXAMIPIE 2 et 179

B.2 Complex Examples of QUery Filters. ..o 179
B.2.1 OVBIVIBW ..ottt ettt ettt 179
B.2.2 Used type MOl ... e 180
B.2.3 EXAMPIE NOTES ... it 182
B.2.4 EXAMIPIE Lo 183
B.2.5 E XML 2. 184
B.2.6 EXAMIPIE B 185
B.2.7 EX AL oo 187
B.2.8 EXAMIPIE Bt 188
B.2.9 E XML B e 189
B.2.10 E XML 7 e 191
B.2.11 EXAMIPIE Bttt 192
B.2.12 EXaMIPDIE O 194

FIGURES

Figure 1 — DISCOVEIY SEIVICE ST oiuiiiiiiiiiii e 5
Figure 2 — SecureChannel Service Set...........ccooiiiiiiiiiiiiiiii 5
FIQUIre 3 — SESSION SEIVICE SeT .. e 5
Figure 4 — NodeManagement SErVIiCe SeT ... e 6
FIgUIE 5 — VIBW SBIVICE SOl ittt 6
Figure 6 — AtIrDULE SEIVICE Set....ciuiiiiiiii e 7
Figure 7 — MethOd SEIVICE St ... e 7
Figure 8 — Monitoreditem and Subscription ServiCe SetS........oviiiiiiiiii e 8
FIQUIE O — DISCOVEIY PrOCESS ..uetiiiteit ittt et et et et et et et et et e et et e ea e et e en e an e anaeenaaees 11
Figure 10 — USING @ GaEWAY SEIVELiitiiitiiit it eens 16
Figure 11 — The Registration Process — Manually Launched Servers............coocoviiiiiiiiiinnennns 17
Figure 12 — The Registration Process — Automatically Launched Servers.........ccooeieeienennns 17
Figure 13 — SecureChannel and SESSION SEIVICESivuiiriiiiiiiiiie e eas 20
Figure 14 — MultipleXing USErs ON @ SESSION.....iuiiuiii et e e e e e eneens 26
Figure 15 — MonitoredItem MOl ... 63
Figure 16 — Typical delay in change deteCtioncooiiiiiiiiiii e 65
Figure 17 — Queue overflow handling ..o e 66

Figure 18 — Triggering MOAEIiuiiii e e e e e e e e e eneeas 67

1.05.04 Vii OPC 10000-4: Services

Figure 19 — Obtaining and installing an Application Instance Certificateccooveiinnnn, 92
Figure 20 — Determining if an Application Instance Certificate is trusted.............cooeevevieinnnnis 96
Figure 21 — Establishing a SecureChannelcociii i e 97
Figure 22 — EStablishing @ SESSION ...t 98
Figure 23 — IMpPersonating @ USEIo 99
Figure 24 — Indirect handshake with an Identity Provider...........coocoiviiiiiiciiinecee e 100
Figure 25 — Direct handshake with an Identity Providercocooviiiiiiicii e 101
Figure 26 — Transparent Redundancy Setup eXample ..o 107
Figure 27 — Non-Transparent RedundanCy SEtUDcc.iiiuiiiiiiiiiiei e 108
FIQUre 28 — ClieNt Start-UP StE P S ciriii ittt e e e e e e e e e aaenees 111
FIQUre 29 — Cold FailOVer . e e e 112
Figure 30 — Warm FailOVEr 113
FIigure 31 — HOt FailOVET ... 114
Figure 32 — HOtANAMIrrored FailOVero i e 115
Figure 33 — Server proxy for RedUundanCyc.cooeiiiiiiiii e 115
Figure 34 — Transparent network RedundancCyccooviiiiiiiiiiii e 116
Figure 35 — Non-transparent network RedundanCyc.coviiiiiiiiiiiniiin e 117
FIQUIre 36 — RECONNECT SEOUEICE .uuuitiiit it iet ettt et e e e e e e et e e et e et e e r et e e e enetaenees 118
Figure 37 — Logical layers Of @ SeIrVer ... e 159
Figure 38 — Obtaining a SessionAuthenticationTokencoooiiiiii 159
Figure 39 — ENCryptedSecret [aY0UL. 168
Figure B.1 — Filter 10giC tree eXampPle . ..o e 178
Figure B.2 — Filter 10giC tree eXampPle ... e 179
Figure B.3 — EXample TYPE NOAES ... 181
Figure B.4 — Example INStance NOGES oo 182
Figure B.5 — EXamPle L Filer .o e e e 183
Figure B.6 — Example 2 filter [0QiC tre ... 185
Figure B.7 — Example 3 filter 0giC tree . ..o 186
Figure B.8 — Example 4 filter l0giC tree . ..o 188
Figure B.9 — Example 5 filter 10giC tree . ..o 189
Figure B.10 — Example 6 filter [0giC tre@oiuieii e 190
Figure B.11 — Example 7 filter 0giC tre@ ..o 192
Figure B.12 — Example 8 filter l0giC tre@ .. oo i 193
Figure B.13 — Example 9 filter [0giC tre@ ... 195
TABLES
Table 1 — Service definition table ... 4
Table 2 — Parameter Types defined in OPC 10000-3ottt eneeas 4
Table 3 — FindServers Service ParameterS. . ..o 13
Table 4 — FindServersOnNetwork Service Parameterscooooviiiiiiiiiii e 14
Table 5 — GetENdpPOoints SErviCe ParametersSii.iiiii e e e e e eneees 16

Table 6 — RegisterServer SEervice Parametersoivii e 18

OPC 10000-4: Services Viii 1.05.04

Table 7 — RegisterServer Service ReSUlIt COUESiiuiiiiiiiiiii e 18
I= o1 ToI T Yo [1S 1T Y= VA= 72 19
Table 9 — RegisterServer2 Service ResUlt COUESvvviiiiiiiiiiii e 19
Table 10 — RegisterServer2 Operation Level Result Codescooviiiiiiiiiiiieee, 19
Table 11 — OpenSecureChannel Service Parametersooouiiiiiiiiiiieiieeeecee e 22
Table 12 — OpenSecureChannel Service Result Codesocovviiiiiiiiii i 23
Table 13 — CloseSecureChannel Service Parametersooouviiiiiiiiiineiniec e 24
Table 14 — CloseSecureChannel Service Result COdesScooviiiiiiiiiii e 24
Table 15 — CreateSessSion ServiCe ParameterS. . ..o 27
Table 16 — CreateSession Service ResUlt COUESo 28
Table 17 — ActivateSession ServiCe ParameterSo 30
Table 18 — ActivateSession Service ResUlt COUES ...t 31
Table 19 — CloseSessSion ServiCe Parameters ... e 31
Table 20 — CloseSession Service Result Codesoc.veiiiiiiiiii e 31
Table 21 — Cancel SEerviCe ParametersS. e 32
Table 22 — AAANOdES ServiCe ParamMetersSoo.iieiiiiie e eae e 33
Table 23 — AddNodes Service ReSUIt COUESiviiiiiiii e 33
Table 24 — AddNodes Operation Level Result Codesocooiiiiiiiiiicc e, 34
Table 25 — AddReferences ServiCe ParameterS. . ..o 35
Table 26 — AddReferences Service ResuUlt COUESot 35
Table 27 — AddReferences Operation Level Result CodesS.........covviiiieiiiiiiii e 35
Table 28 — DeleteN0Odes Service Parameters ..o 36
Table 29 — DeleteNodes Service ResuUlt COUES ..o 36
Table 30 — DeleteNodes Operation Level Result Codescovoviiiiiiiii i 37
Table 31 — DeleteReferences ServiCe Parametersoc.vvviiiiiiiiiieee e 37
Table 32 — DeleteReferences Service Result COUScoiiiiiiiiiiii e 37
Table 33 — DeleteReferences Operation Level Result CodesS.......coccvviiiiiiiiiiiiiiiiic e, 38
Table 34 — BrowSe ServiCe ParamMeterS . ..ottt e eneees 39
Table 35 — Browse Service REeSUIt COUBSvuiiiiiiiiiiie e 40
Table 36 — Browse Operation Level Result Codes ..o 40
Table 37 — BrowseNext ServiCe Parameterso 41
Table 38 — BrowseNext Service ReSUIt COUBS ... uuiiuiiiiei e 41
Table 39 — BrowseNext Operation Level Result COdeScovvviiiiiiiiii e 42
Table 40 — TranslateBrowsePathsToNodelds Service Parameters.........cccocovvoviiviniiniieeneennen. 43
Table 41 — TranslateBrowsePathsToNodelds Service Result Codes.........ccocoviiviiiiniiienannee. 43
Table 42 — TranslateBrowsePathsToNodelds Operation Level Result Codes..............cc.ueee.e. 44
Table 43 — RegisterNOdes Service Parameters ... 44
Table 44 — RegisterNodes Service ResUlt COUES.....oiuiiiiiiiii e 45
Table 45 — UnregisterNodes Service Parameters ..o 45
Table 46 — UnregisterNodes Service ReSUlt COUESvvniiiiiiiiiiiiii e 45
Table 47 — QueryFirst ReqQUESE ParameterS ... e e eneees 48
Table 48 — QueryFirst ReSpONSE Parameters 49

Table 49 — QueryFirst Service ReSUIt COUESiuiiiiiii e 50

1.05.04 iX OPC 10000-4: Services

Table 50 — QueryFirst Operation Level Result COUeSooiiiiiiiiiiii e 50
Table 51 — QueryNext SErviCe ParameterScociiiiiiii e 51
Table 52 — QueryNext Service ResUIt COUESivviiiiii e 51
Table 53 — Read ServiCe ParamMetersS i 52
Table 54 — Read Service ReSUIt COUESouiiniiiiiii e 52
Table 55 — Read Operation Level Result Codesocvviiiiiiiiiirre e 53
Table 56 — HistoryRead Service Parametersc..iiiiieic e e e e e ee e ees 54
Table 57 — HistoryRead Service ReSUlt COUESocvviiiiiiiiiii e 56
Table 58 — HistoryRead Operation Level Result Codesccoviiiiiiiiiiciieee 56
Table 59 — Write ServiCe ParamMeerS oot 57
Table 60 — Write Service ReSUIt COAES ... 58
Table 61 — Write Operation Level ReSuUlt COUEScouiiiiiiiiiii e 58
Table 62 — HistoryUpdate Service Parameters ..ot 59
Table 63 — HistoryUpdate Service ResuUlt COUESoviiriiiiiiiiic e 59
Table 64 — HistoryUpdate Operation Level Result Codescocovviiiiiiiiiiiiiceee, 59
Table 65 — Call SErviCe ParamMetersS ..o e enees 61
Table 66 — Call Service ReSUIt COUBSuiiniiiiii e 62
Table 67 — Call Operation Level Result COUES ...t 62
Table 68 — Call Input Argument REeSUIt COUESiviiniiiiii i e 62
Table 69 — CreateMonitoredItems Service Parameterscoovviiiiiiiiiiiiiee e 69
Table 70 — CreateMonitoreditems Service Result COdescoviiiiiiiiiiiiiiii e, 69
Table 71 — CreateMonitoredltems Operation Level Result Codescoovvvviiiiiiiiiiieinnn, 70
Table 72 — ModifyMonitoredltems Service Parameterscooovviiiiiiiii i 71
Table 73 — ModifyMonitoredltems Service Result COUESovviiiiiiiiei e 71
Table 74 — ModifyMonitoredltems Operation Level Result Codesccocooviiiiiiiniiiniiiniineennn. 72
Table 75 — SetMonitoringMode Service Parameterscovveiiiiiiiiii e 72
Table 76 — SetMonitoringMode Service Result Codesccoiiiiiiiiiiiii e, 72
Table 77 — SetMonitoringMode Operation Level Result Codesccocceviiviiiiiiiiiiiiiniieeen, 72
Table 78 — SetTriggering Service Parameters . ..o 73
Table 79 — SetTriggering Service Result COUES ... 73
Table 80 — SetTriggering Operation Level Result COdesSocoviiiiiiiiiiiieeeee 74
Table 81 — DeleteMonitoreditems Service Parameterscoovvviiiiiiiei e 74
Table 82 — DeleteMonitoredltems Service Result COAeScooiiiiiiiiiiiiiiiie e 74
Table 83 — DeleteMonitoreditems Operation Level Result Codesccoovviiiiiiiiniiniiniinaennee. 74
Table 84 — SUDSCHIPLION SEAES . .. it 77
Table 85 — Subscription State Table ... 78
Table 86 — State variables and pParametersoooiiiiiii 80
TADIE B7 — FUNCHIONS e ettt et et e e e e enees 81
Table 88 — CreateSubscription Service Parametersccoviiiiiiiiiii e 82
Table 89 — CreateSubscription Service ResuUlt COUEScoiiiiiiiiiiiiiic e 83
Table 90 — ModifySubscription Service Parametersccovviiiiiiiiiiiiiee e 84
Table 91 — ModifySubscription Service Result COESoiiiiiiiiiiii e 84

Table 92 — SetPublishingMode Service Parametersoooiiiiiiiiiii e 85

OPC 10000-4: Services X 1.05.04

Table 93 — SetPublishingMode Service Result COUES.......viiiiiiiiiii e 85
Table 94 — SetPublishingMode Operation Level Result Codes.......occovvviiiiiiiiiiiiiiiiieeeee, 86
Table 95 — Publish Service Parameters ..o 87
Table 96 — Publish Service ReSUIt COUESouiiiiiiiiii e 87
Table 97 — Publish Operation Level ReSult COUESot 88
Table 98 — Republish Service Parametersoviiiiiiii e e 88
Table 99 — Republish Service ResUlt COUESivviiiiiiiii e 88
Table 100 — TransferSubscriptions Service Parameters ..o 89
Table 101 — TransferSubscriptions Service Result Codes........ooviiiiiiiiiii e 89
Table 102 — TransferSubscriptions Operation Level Result Codes..........ocoooviiiiiiiiiiiennnnn, 90
Table 103 — DeleteSubscriptions Service Parameterscccoiviiiiiiiiiic e 90
Table 104 — DeleteSubscriptions Service Result COUEScvviiiiiiiiiei e 90
Table 105 — DeleteSubscriptions Operation Level Result Codes.......cccoovviiiiiiiiiiiiiineieeen, 90
Table 106 — Certificate validation StEPSvuiiii i 94
Table 107 — Sessionlessinvoke Service Parameterso 102
Table 108 — Sessionlessinvoke Service Result COUESc.viiiiiiiiiii i 103
Table 109 — ServiCELeVel FaNQES ... 109
Table 110 — Server FailovVer MOAESouiiiii e 110
Table 111 — Redundancy Failover aCtionNSc.iiuiiiii e 111
Table 112 — AdditioNalParameterSTYPE .. it 121
Table 113 — ApplicatioNDESCIIPLIONoouiit e 121
Table 114 — ApplicationInstanceCertifiCateooviiiiiiii e 122
Table 115 — ApplicatioNTYPe VAIUEScoiriii e 122
Table 116 — BrowseDireCtion VAlUBS........ovuiiiiiiei et e e 122
Table 117 — BroWSERESUIL. ... e e 123
Table 118 — ContentFilter STrUCTUIEie i 123
Table 119 — ContentFilterReSUIt SIFUCTUIEoeeii e 124
Table 120 — ContentFilterResult ReSUlt COUES . ..ot 124
Table 121 — ContentFilterResult Operand Result COUESovuuiiiiiiiiii i 124
Table 122 — Basic FilterOperator definitiono 125
Table 123 — Complex FilterOperator definitioncoooiiiiiii e 127
Table 124 — Wildcard CharaCtersovuiiuii i e e e e neas 128
Table 125 — CONVEISION FTUIBS ...ttt e e e e e e e e ennenns 129
Table 126 — Data PreCedenCe FUIESo i 130
Table 127 — Logical AND Truth table ... 130
Table 128 — Logical OR Truth table ... 131
Table 129 — FilterOperand parameter TYPelds... ..o 131
Table 130 — ElemMentOPerandttt e 131
Table 131 — LiteralOpPerandt ea e 131
Table 132 — AttribUtEOPEIANGin it e e e 132
Table 133 — SIiMpleAttribUtEOPEraNndc.ivuii e e e 132
Table 134 — DataChangeTrigger VAIUES ... e 133

TaBIE 135 — DataValUE .. .o et e e 134

1.05.04 Xi OPC 10000-4: Services

Table 136 — DiagnOStICINTOiie it 136
Table 137 — DiscoveryConfiguration parameterTypelds........coovieiiiiiiiiiii e 136
Table 138 — MdnsDiscoveryConfigUIrationccuuiiii i e e e a e eas 137
Table 139 — ENdPOiNtDESCIIPLION . ..cvuiiit it 137
Table 140 — EPhemeralkey Ty Pe ... e 138
JIR= 1 o] T e R 5 q o =Y Lo £=To | Lo o 1= o 138
Table 142 — ExtensibleParameter base tyPe.....cco i 138
Table 143 — MessageSecurityMode VAIUESveuiiiiii e 139
Table 144 — MONItOrNNGParamMEIEIS e it 140
Table 145 — MonitoringFilter parameterTypelds......ccoviiiiiiii e 141
Table 146 — DataChange R ilter e 141
Table 147 — EVENtFIItEr StrUCTUIEouiiii e ea e 143
Table 148 — EVentFilterReSUIt STIUCTUIEie e eas 143
Table 149 — EventFilterResult ReSUlt COAES ..ot 143
Table 150 — AggregateFilter StrUCTUIEiiuiii e e e 144
Table 151 — AggregateFilterResUlt STTUCTUIEieuiiieii e 144
Table 152 — MonitoringMoOde VAIUESoouiii e 145
Table 153 — NodeAttributes parameterTYPeldSc.ovriiiiii e 145
Table 154 — Bit mask for specified AttribULES 146
Table 155 — ODJECIAIIIDULES ...ou e 146
Table 156 — Variable AtrDULESoon e 147
Table 157 — MethOdAIIDULESo e 147
Table 158 — ObjeCtTYPEAIDULES ..o e 147
Table 159 — VariableTypeAttriDULES 148
Table 160 — ReferenceTypPeALtrDULES ... 148
Table 161 — DataTypPeAt i DULES ... e 148
Table 162 — VIEWALIIIDULES ... e 149
Table 163 — GeNECAIIDULES . .oui e e e e 149
Table 164 — NotificationData parameterTypeldscoviiiiiiii 149
Table 165 — DataChangeNOtifiCationo e 150
Table 166 — EVentNOtIfiCAtIONLISTt e 150
Table 167 — StatusChangeNoOtifiCatioNo 151
Table 168 — NOtifiCatiONMESSAGEu it 151
Table 169 — NUMEIICRANGE ... cu it e aeaas 152
Table 170 — QUEIYDAtAS B ... e e 152
Table 171 — ReAAVAlUEI ..o e e e e e neas 153
Table 172 — ReferenceDeSCIiPLION ... 153
Table 173 — RelatiVePath e 154
Table 174 — ReQISIEIEUSEIVET ...t e e 155
Table 175 — REQUESTHEAUGTt e e e eeas 156
Table 176 — RESPONSEHEAUET .. cuiin ittt e e e eaneas 158
Table 177 — SErVICERAUIL... ... e 158

Table 178 — SigNatUrEDatauee i 160

OPC 10000-4: Services Xii 1.05.04

Table 179 — SignedSoftwareCertifiCate.........coov i 160
Table 180 — StatusCode bit aSSIgNMENTSiui i e e e 161
Table 181 — DataValue INfOBILS e e 162
Table 182 — Common Service ReSUIL COUBS ... vttt 163
Table 183 — Common Operation Level Result COUES........coiuiiiiiiiiiii e 165
Table 184 — TimestampSTOREIUIN VAlIUEScuuiiiiii e 166
Table 185 — UserldentityToken parameterTyPeldsS.....cocviiiiiiiiii e 166
Table 186 — Legacy UserldentityToken Encrypted Token Secret Formatccccceeeeeeiennns 168
Table 187 — ENCryptedSecret [aYOULccu i 169
Table 188 — ENCryptedSeCret Data T Y PeS . i it eiie ettt et e e e e e e e e e aaeanas 169
Table 189 — RsaENCryptedSecret SIrUCTUIE ... e 170
Table 190 — ECCENCryptedSeCret LAYOULttt 171
Table 191 — ANONYMOUSIAENTIEY TOKENitiit e 171
Table 192 — UserNameldentity TOKENo e e e 172
Table 193 — EncryptionAlgorithm SeleCtiono 172
Table 194 — X.509 v3 1dentity TOKEN ...t 173
Table 195 — ISSuedldentity TOKEN 173
Table 196 — USEITOKEN P OIICY . v e e e e eenas 174
Table 197 — UsSerTOKENTYPE VAIUEBS ..ottt e e e e 174
Table 198 — VIieWDESCIIPIION . ettt e e 175
Table A.1 — RelativePath ... 176
Table A.2 — RelativePath EXamples. ... 177
Table B.1 — ContentFilter @XamPle ... e 179
Table B.2 — ContentFilter eXample ... 179
Table B.3 — Example 1 NOdeTypeDeSCIPtioNiieuiiiiiii e 183
Table B.4 — Example 1 ContentFilter ... e 183
Table B.5 — Example 1 QUEryDataSetscciiuiiiiiii e 184
Table B.6 — Example 2 NodeTypeDeSCriPtioNc..ieuiiitiiiii e 184
Table B.7 — Example 2 CONteNtFIITEr ... 185
Table B.8 — Example 2 QUErYDaAtASEtS ... c.uiuiiiiiiii e 185
Table B.9 — Example 3 - NodeTypeDeSCrIPLIONccuiiuiiii i 186
Table B.10 — Example 3 CoNtentFIlter e 187
Table B.11 — Example 3 QUEryDataSetSccuiiitiiiiiiii it 187
Table B.12 — Example 4 NOdeTypeDeSCHIPLIONccuiiuiiii e 188
Table B.13 — Example 4 CONtentRIIter 188
Table B.14 — Example 4 QUEryDataSetSc.uiiuiiiiiii ittt 188
Table B.15 — Example 5 NOdeTypeDeSCIPLiONovuuiiitiiiii e 189
Table B.16 — Example 5 CONtentRIlter 189
Table B.17 — Example 5 QUeryDataSetS 189
Table B.18 — Example 6 NOdeTypeDEeSCIIPLION ..vuiin it ene e 190
Table B.19 — Example 6 CONteNtFIterc.iiii e e 190
Table B.20 — Example 6 QUEryDataSetS. . ..oiuii i 190

Table B.21 — Example 6 QueryDataSets without additional information 191

1.05.04 Xiii OPC 10000-4: Services

Table B.22 — Example 7 NOdeTypeDeSCIiPLiONcuuiieiiiii e 191
Table B.23 — Example 7 CONteNtFIer e 192
Table B.24 — Example 7 QUEryDataSetS . i e e e e eas 192
Table B.25 — Example 8 NOdeTypeDeSCIPLiONiuu it 193
Table B.26 — Example 8 CONtENtFIITEr 194
Table B.27 — EXample 8 QUEIYDataSetS . ..iiuiiicii e e e e e e eas 194
Table B.28 — Example 9 NOdeTypeDEeSCIIPLION ...t ee e 194
Table B.29 — Example 9 CONtENtFIITEr e 195

Table B.30 — EXxample 9 QUEryDataSetS . .. 195

OPC 10000-4: Services Xiv 1.05.04

OPC FOUNDATION

UNIFIED ARCHITECTURE -

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis and
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2024, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must
be obtained on an individual basis, directly from the OPC Foundation Web site http://www.opcfoundation.org.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be
required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830.

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

1.05.04 XV OPC 10000-4: Services

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING
The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo

constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
http://www.opcfoundation.org/errata

OPC 10000-4: Services

XVi

1.05.04

Revision 1.05.04 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis i
D Scope Summary Resolution

2487 |Feature External localization of Event Add support for special locales ‘mul’ and ‘gst’ defined in

9308 Messages OPC 10000-3.

6142 |Egrrata EndpointUrl check in CreateSession |Removed the recommendation to check the hostname of
the EndpointUrl used by the Client and to issue a
AuditUrIMismatchEventType.

7307 |Egrrata Status for not supported Methods Added Bad_NotSupported as operation level result if a
Method is not supported for an Object instance.

9122 |cJarification Subscription State Table Changed SubscriptionAssignedToClient to
SubscriptionAssignedToSession.

9234 |Clarification | RelativePath ReferenceTypeld Clarified not specified is null value

9450 Clarification | KeyData for RsaEncryptedSecret Enhanced description for RsaEncryptedSecret KeyData
createion.

9451 Clarification | User for TransferSubscription Clarified requirements for checking ClientUserld for
TransferSubscription

9465 Clarification | Detection of EncryptedSecret Clarified logic to detect an EncrytpedSecret format for user
token encryption

9489 Clarification | CreateSession serverEndpoints Clarified that compare of list is done only for used

9519 verification transportProfileUri and compare is only done if

- GetEndpoints results used for endpoint selection

9578 Errata Bad_TooManySubscriptions in Added Bad_TooManySubscriptions as operation level

TransferSubscriptions result code for TransferSubscriptions

9594 Errata Client Certificate use Added explicit requirement to verify Client Certificate
before it is used

10003 |Errata Nonce length requirement Nonce length must be between 32 and 128 bytes inclusive.

https://www.opcfoundation.org/mantis/view.php?id=5487
https://www.opcfoundation.org/mantis/view.php?id=9308
https://www.opcfoundation.org/mantis/view.php?id=6142
https://www.opcfoundation.org/mantis/view.php?id=7307
https://www.opcfoundation.org/mantis/view.php?id=9122
https://www.opcfoundation.org/mantis/view.php?id=9234
https://www.opcfoundation.org/mantis/view.php?id=9451
https://www.opcfoundation.org/mantis/view.php?id=9451
https://www.opcfoundation.org/mantis/view.php?id=9465
https://www.opcfoundation.org/mantis/view.php?id=9465
https://www.opcfoundation.org/mantis/view.php?id=9519
https://www.opcfoundation.org/mantis/view.php?id=9578
https://www.opcfoundation.org/mantis/view.php?id=9594
https://www.opcfoundation.org/mantis/view.php?id=10003

OPC 10000-4: Services 1 1.05.04

OPC Unified Architecture Specification

Part 4: Services

1 Scope

This part of OPC 10000 defines the OPC Unified Architecture (OPC UA) Services. The Services
defined are the collection of abstract Remote Procedure Calls (RPC) that are implemented by OPC
UA Servers and called by OPC UA Clients. All interactions between OPC UA Clients and Servers
occur via these Services. The defined Services are considered abstract because no particular RPC
mechanism for implementation is defined in this document. OPC 10000-6 specifies one or more
concrete mappings supported for implementation. For example, one mapping in OPC 10000-6 is to
UA-TCP UA-SC UA-Binary. In that case the Services described in this document appear as OPC
UA Binary encoded payload, secured with OPC UA Secure Conversation and transported via OPC
UA TCP.

Not all OPC UA Servers will need to implement all of the defined Services. OPC 10000-7 defines
the Profiles that dictate which Services need to be implemented in order to be compliant with a
particular Profile.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments and errata)
applies.

OPC 10000-1: OPC Unified Architecture - Part 1: Overview and Concepts
http://www.opcfoundation.org/UA/Partl/

OPC 10000-2: OPC Unified Architecture - Part 2: Security Model
http://www.opcfoundation.org/UA/Part2/

OPC 10000-3: OPC Unified Architecture - Part 3: Address Space Model
http://www.opcfoundation.org/UA/Part3/

OPC 10000-5: OPC Unified Architecture - Part 5: Information Model
http://www.opcfoundation.org/UA/Part5/

OPC 10000-6: OPC Unified Architecture - Part 6: Mappings
http://www.opcfoundation.org/UA/Part6/

OPC 10000-7: OPC Unified Architecture - Part 7: Profiles
http://www.opcfoundation.org/UA/Part7/

OPC 10000-8: OPC Unified Architecture - Part 8: Data Access
http://www.opcfoundation.org/UA/Part8/
OPC 10000-9: OPC Unified Architecture - Part 9: Alarms and Conditions

http://www.opcfoundation.org/UA/Part9/

OPC 10000-11: OPC Unified Architecture - Part 11: Historical Access
http://www.opcfoundation.org/UA/Part11/

1.05.04 2 OPC 10000-4: Services

OPC 10000-12: OPC Unified Architecture - Part 12: Discovery
http://www.opcfoundation.org/UA/Part12/

OPC 10000-13: OPC Unified Architecture - Part 13: Aggregates
http://www.opcfoundation.org/UA/Part13/
OPC 10000-18: OPC Unified Architecture - Part 18: Role-Based Security

http://www.opcfoundation.org/UA/Part18/
3 Terms, definitions, abbreviated terms and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in OPC 10000-1, OPC 10000-2,
OPC 10000-3, and the following apply.

3.1.1
Active Server
Server which is currently sourcing information

Note 1 to entry: In OPC UA redundant systems, an Active Server is the Server that a Client is using as the source of data.

3.1.2
Deadband
permitted range for value changes that will not trigger a data change Notification

Note 1 to entry: Deadband can be applied as a filter when subscribing to Variables and is used to keep noisy signals
from updating the Client unnecessarily. This document defines AbsoluteDeadband as a common filter. OPC 10000-8
defines an additional Deadband filter.

3.1.3

DiscoveryEndpoint

Endpoint that allows Clients access to Discovery Services without security

Note 1 to entry: A DiscoveryEndpoint allows access to Discovery Services without a Session and without message
security.

3.1.4

Endpoint

physical address available on a network that allows Clients to access one or more Services provided
by a Server

Note 1 to entry: Each Server may have multiple Endpoints. Each Endpoint includes a HostName.

3.1.5
EphemeralKey
public-private key pair generated for each execution of a key establishment process.

Note 1 to entry: EphemeralKeys are necessary when using ECC based SecurityPolicies.

3.1.6
Failed Server
Server that is not operational.

Note 1 to entry: In OPC UA redundant system, a Failed Server is a Server that is unavailable or is not able to serve data.

3.1.7
Failover
act of switching the source or target of information.

Note 1 to entry: In OPC UA redundant systems, a Failover is the act of a Client switching away from a failed or degraded
Server to another Server in the redundant set (Server failover). In some cases a Client may have no knowledge of a
Failover action occurring (transparent redundancy). A Client failover is the act of an alternate Client replacing an existing
failed or degraded Client connection to a Server.

3.1.8
Gateway Server
Server that acts as an intermediary for one or more Servers

OPC 10000-4: Services 3 1.05.04

Note 1 to entry: Gateway Servers may be deployed to limit external access, provide protocol conversion or to provide
features that the underlying Servers do not support.

3.1.9
HostName
unique identifier for a machine on a network

Note 1 to entry: This identifier is unique within a local network; however, it may also be globally unique. The identifier
can be an IP address.

3.1.10

Redundancy

presence of duplicate components enabling the continued operation after a failure of an OPC UA
component

Note 1 to entry: This may apply to Servers, Clients or networks.

3.1.11
RedundantServerSet
two or more Servers that are redundant with each other

Note 1 to entry: A RedundantServerSet is a group of Servers that are configured to provide Redundancy. These Servers
have requirements related to the address space and provide Failovers.

3.1.12
SecurityToken
identifier for a cryptographic key set

Note 1 to entry: All SecurityTokens belong to a security context. For OPC UA the security context is the SecureChannel.

3.1.13
ServerUri
ApplicationUri for a Server

3.1.14

SoftwareCertificate

digital certificate for a software product that can be installed on several hosts to describe the
capabilities of the software product

Note 1 to entry: Different installations of one software product could have the same software certificate. Software
certificates are not relevant for security. They are used to identify a software product and its supported features.
SoftwareCertificates are described in 6.4.

3.2 Abbreviated terms

API Application Programming Interface
BNF Backus-Naur Form

CA Certificate Authority

CRL Certificate Revocation List

CTL Certificate Trust List

DA Data Access

ECC Elliptic Curve Cryptography

GDS Global Discovery Server

JWT JSON Web Token

NAT Network Address Translation

RSA Rivest, Shamir and Adleman [Public Key Encryption System]
UA Unified Architecture

URI Uniform Resource Identifier

URL Uniform Resource Locator

1.05.04 4 OPC 10000-4: Services

3.3 Conventions for Service definitions

OPC UA Services contain parameters that are conveyed between the Client and the Server. The
OPC UA Service specifications use tables to describe Service parameters, as shown in Table 1.
Parameters are organized in this table into request parameters and response parameters.

Table 1 — Service definition table

Name Type Description
Request Defines the request parameters of the Service
Simple Parameter Name Description of this parameter
Constructed Parameter Name Description of the constructed parameter
Component Parameter Name Description of the component parameter
Response Defines the response parameters of the Service

The Name, Type and Description columns contain the name, data type and description of each
parameter. All parameters are mandatory, although some may be unused under certain
circumstances. The Description column specifies the value to be supplied when a parameter is
unused.

Two types of parameters are defined in these tables, simple and constructed. Simple parameters
have a simple data type, such as Boolean or String.

Constructed parameters are composed of two or more component parameters, which can be simple
or constructed. Component parameter names are indented below the constructed parameter name.

The data types used in these tables may be base types, common types to multiple Services or
Service-specific types. Base data types are defined in OPC 10000-3. The base types used in
Services are listed in Table 2. Data types that are common to multiple Services are defined in Clause
7. Data types that are Service-specific are defined in the parameter table of the Service.

Table 2 — Parameter Types defined in OPC 10000-3

Parameter Type
BaseDataType
Boolean
ByteString
Double
Duration

Guid

Int32

Localeld
Nodeld
QualifiedName
String

Uint16

Ulnt32
Ulnteger
UtcTime
XmIElement

The parameters of the Request and Indication service primitives are represented in Table 1 as
Request parameters. Likewise, the parameters of the Response and Confirmation service primitives
are represented in Table 1 as Response parameters. All request and response parameters are
conveyed between the sender and receiver without change. Therefore, separate columns for
request, indication, response and confirmation parameter values are not needed and have been
intentionally omitted to improve readability.

OPC 10000-4: Services 5 1.05.04

4 Overview

4.1 Service Set model

This clause specifies the OPC UA Services. The OPC UA Service definitions are abstract
descriptions and do not represent a specification for implementation. The mapping between the
abstract descriptions and the Communication Stack derived from these Services are defined in OPC
10000-6.

These Services are organized into Service Sets. Each Service Set defines a set of related Services.
The organization in Service Sets is a logical grouping used in this document and is not used in the
implementation.

The Discovery Service Set, illustrated in Figure 1, defines Services that allow a Client to discover
the Endpoints implemented by a Server and to read the security configuration for each of those
Endpoints.

Server

Discovery Services R Server Description
>

Endpoint Description

Figure 1 — Discovery Service Set

The SecureChannel Service Set, illustrated in Figure 2, defines Services that allow a Client to
establish a communication channel to ensure the Confidentiality and Integrity of Messages
exchanged with the Server.

Server

SecureChannel Security Policy

services

v

Security Token

Figure 2 — SecureChannel Service Set

The Session Service Set, illustrated in Figure 3, defines Services that allow the Client to
authenticate the user on whose behalf it is acting and to manage Sessions.

. Server
Session

services

v

Session

Figure 3 — Session Service Set

The NodeManagement Service Set, illustrated in Figure 4, defines Services that allow the Client to
add, modify and delete Nodes in the AddressSpace.

1.05.04 6 OPC 10000-4: Services

OPC UA Server

OPC UA AddressSpace

NodeManagement ~

services @ @ @

v

Figure 4 — NodeManagement Service Set

The View Service Set, illustrated in Figure 5, defines Services that allow Clients to browse through
the AddressSpace or subsets of the AddressSpace called Views. The Query Service Set allows
Clients to get a subset of data from the AddressSpace or the View.

OPC UA Server

OPC UA AddressSpace

View
services

Query
services

Figure 5 — View Service Set

The Attribute Service Set is illustrated in Figure 6. It defines Services that allow Clients to read and
write Attributes of Nodes, including their historical values. Since the value of a Variable is modelled
as an Attribute, these Services allow Clients to read and write the values of Variables.

OPC 10000-4: Services

Attribute

OPC UA Server

OPC UA AddressSpace
(Other Node Types

Attributes

N ———4
(Object)

Attributes

services

Variables

Attributes

Figure 6 — Attribute Service Set

1.05.04

The Method Service Set is illustrated in Figure 7. It defines Services that allow Clients to call
methods. Methods run to completion when called. They may be called with method-specific input
parameters and may return method-specific output parameters.

Call

OPC UA Server

OPC UA Address Space

(Object Node \

Variables

Methods

service

v

-0
-0

N —

Figure 7 — Method Service Set

The Monitoredltem Service Set and the Subscription Service Set, illustrated in Figure 8, are used
together to subscribe to Nodes in the OPC UA AddressSpace.

The Monitoreditem Service Set defines Services that allow Clients to create, modify, and delete

Monitoredltems used to monitor Attributes for value changes and Objects for Events.

These Notifications are queued for transfer to the Client by Subscriptions.

The Subscription Service Set defines Services that allow Clients to create, modify and delete
Subscriptions. Subscriptions send Notifications generated by Monitoreditems to the Client.
Subscription Services also provide for Client recovery from missed Messages and communication

failures.

1.05.04 8 OPC 10000-4: Services

OPC UA Server

OPC UA AddressSpace
[Node \
Attributes
; —_—
Monitoredltem a Monitored
services - Item
> Events
Subscription » | Subscription
services o

Figure 8 — MonitoredItem and Subscription Service Sets

4.2 Request/response Service procedures

Request/response Service procedures describe the processing of requests received by the Server,
and the subsequent return of responses. The procedures begin with the requesting Client submitting
a Service request Message to the Server.

Upon receipt of the request, the Server processes the Message in two steps. In the first step, it
attempts to decode and locate the Service to execute. The error handling for this step is specific to
the communication technology used and is described in OPC 10000-6.

If it succeeds, then it attempts to access each operation identified in the request and perform the
requested operation. For each operation in the request, it generates a separate success/failure code
that it includes in a positive response Message along with any data that is to be returned.

To perform these operations, both the Client and the Server may make use of the API of a
Communication Stack to construct and interpret Messages and to access the requested operation.

The implementation of each service request or response handling shall check that each service
parameter lies within the specified range for that parameter.

5 Service Sets

5.1 General

This clause defines the OPC UA Service Sets and their Services. Clause 7 contains the definitions
of common parameters used by these Services. Subclause 6.5 describes auditing requirements for
all services.

Whether or not a Server supports a Service Set, or a Service within a Service Set, is defined by its
Profile. Profiles are described in OPC 10000-7.

5.2 Service request and response header

Each Service request has a RequestHeader and each Service response has a ResponseHeader.

The RequestHeader structure is defined in 7.33 and contains common request parameters such as
authenticationToken, timestamp and requestHandle.

The ResponseHeader structure is defined in 7.34 and contains common response parameters such
as serviceResult and diagnosticinfo.

OPC 10000-4: Services 9 1.05.04

5.3 Service results

Service results are returned at two levels in OPC UA responses, one that indicates the status of the
Service call, and the other that indicates the status of each operation requested by the Service.

Service results are defined via the StatusCode (see 7.39).

The status of the Service call is represented by the serviceResult contained in the ResponseHeader
(see 7.34). The mechanism for returning this parameter is specific to the communication technology
used to convey the Service response and is defined in
OPC 10000-6.

The status of individual operations in a request is represented by individual StatusCodes.
The following cases define the use of these parameters.

a) A bad code is returned in serviceResult if the Service itself failed. In this case, a ServiceFault
shall be returned instead of the Service response message. The ServiceFault is defined in 7.35.

b) The good code is returned in serviceResult if the Service fully or partially succeeded. In this
case, other response parameters are returned. The Client shall always check the response
parameters, especially all StatusCodes associated with each operation. These StatusCodes may
indicate bad or uncertain results for one or more operations requested in the Service call.

All Services with arrays of operations in the request shall return a bad code in the serviceResult if
the array is empty.

The Services define various specific StatusCodes and a Server shall use these specific StatusCodes
as described in the Service. A Client should be able to handle these Service specific StatusCodes.
In addition, a Client shall expect other common StatusCodes defined in Table 182 and Table 183.
Additional details for Client handling of specific StatusCodes may be defined in OPC 10000-7.

If the Server discovers, through some out-of-band mechanism that the application or user
credentials used to create a Session or SecureChannel have been compromised, then the Server
should immediately terminate all sessions and channels that use those credentials. In this case, the
Service result code should be either Bad_ldentityTokenRejected or Bad_CertificateUntrusted.

Message parsing can fail due to syntax errors or if data contained within the message exceeds
ranges supported by the receiver. When this happens messages shall be rejected by the receiver.
If the receiver is a Server then it shall return a ServiceFault with result code of Bad_DecodingError
or Bad_EncodingLimitsExceeded. If the receiver is the Client then the Communication Stack should
report these errors to the Client application.

Many applications will place limits on the size of messages and/or data elements contained within
these messages. For example, a Server may reject requests containing string values longer than a
certain length. These limits are typically set by administrators and apply to all connections between
a Client and a Server.

Clients that receive Bad_EncodingLimitsExceeded faults from the Server will likely need to
reformulate their requests. The administrator may need to increase the limits for the Client if it
receives a response from the Server with this fault.

In some cases, parsing errors are fatal and it is not possible to return a fault. For example, the
incoming message could exceed the buffer capacity of the receiver. In these cases, these errors
may be treated as a communication fault which requires the SecureChannel to be re-established
(see 5.6).

The Client and Server reduce the chances of a fatal error by exchanging their message size limits
in the CreateSession service. This will allow either party to avoid sending a message that causes a
communication fault. The Server should return a Bad_ResponseToolLarge fault if a serialized
response message exceeds the message size specified by the Client. Similarly, the Client
Communication Stack should report a Bad_RequestToolLarge error to the application before sending
a message that exceeds the Server’s limit.

1.05.04 10 OPC 10000-4: Services

Note that the message size limits only apply to the raw message body and do not include headers
or the effect of applying any security. This means that a message body that is smaller than the
specified maximum could still cause a fatal error.

5.4 Locale Negotiation

A number of Services expect an array of Localelds which are used by a Server to determine in what
language or languages LocalizedText should be returned.

The array of Localelds is in the preferred order the Client would like the Server to use when selecting
the locale of the LocalizedText to be returned. The first Localeld in the list is the most preferred. If
the Server returns a LocalizedText to the Client, the Server shall return the translation which is the
most preferred that it can. If it does not have a translation for any of the locales identified in this list,
then it shall return LocalizedText in an available locale. See OPC 10000-3 for more details on
Localelds. If the Client fails to specify at least one Localeld, the Server shall return any one that it
has.

Multi-language LocalizedText can be requested using the special ‘mul’ or ‘gst’ locales as the first
entry of the list. See OPC 10000-3 for detail of the special locales and how LocalizedText is used
with them. If there are no further entries, the Server shall return all languages available. If there are
more languages included after ‘mul’ or ‘gst’, the Server shall return only those languages from that
list. If the Server doesn’t have a translation for any of the locales included in the list, then it shall
return LocalizeText in an available locale. The special ‘mul’ or ‘qst’ locales shall not be used in
Write.

If a Client requests ‘mul’ it shall be prepared to receive a ‘mul’ or another locale, but not ‘gst’
depending on what the Server can provide for a particular LocalizedText.

If a Client requests ‘gst’ it shall be prepared to receive a ‘qst’, ‘mul’ or another locale depending on
what the Server can provide for a particular LocalizedText.

5.5 Discovery Service Set
5.5.1 Overview

This Service Set defines Services used to discover the Endpoints implemented by a Server and to
read the security configuration for those Endpoints. The Discovery Services are implemented by
individual Servers and by dedicated Discovery Servers. OPC 10000-12 describes how to use the
Discovery Services with dedicated Discovery Servers.

Every Server shall have a DiscoveryEndpoint that Clients can access without establishing a Session.
This Endpoint may or may not be the same Session Endpoint that Clients use to establish a
SecureChannel. Clients read the security information necessary to establish a SecureChannel by
calling the GetEndpoints Service on the DiscoveryEndpoint.

In addition, Servers may register themselves with a well-known Discovery Server using the
RegisterServer Service. Clients can later discover any registered Servers by calling the FindServers
Service on the Discovery Server.

The discovery process using FindServers is illustrated in Figure 9. The establishment of a
SecureChannel (with MessageSecurityMode NONE) for FindServers and GetEndpoints is omitted
from the figure for clarity.

OPC 10000-4: Services 11 1.05.04

Discover
y Server
Server : :

T
I
}
! D RegisterServer() D

Client

FindServers()

ApplicationDescription[]

-]

Discovery Registration
Endpoint Endpoint

GetEndpoints()

{r EndpointDescription[] }
‘ L
|
|
|
|

OpenSecureChannel() D
|

Discovery Session
Endpoint Endpoint

Figure 9 — Discovery process

The URL for a DiscoveryEndpoint shall provide all of the information that the Client needs to connect
to the DiscoveryEndpoint.

Once a Client retrieves the Endpoints, the Client can save this information and use it to connect
directly to the Server again without going through the discovery process. If the Client finds that it
cannot connect then the Server configuration may have changed and the Client needs to go through
the discovery process again.

DiscoveryEndpoints shall not require any message security, but it may require transport layer
security. In production systems, Administrators may disable discovery for security reasons and
Clients shall rely on cached EndpointDescriptions. To provide support for systems with disabled
Discovery Services Clients shall allow Administrators to manually update the EndpointDescriptions
used to connect to a Server. Servers shall allow Administrators to disable the DiscoveryEndpoint. If
GetEndpoints is disabled and the Server Certificate is updated either automatically with Certificate
Manager or manually, Clients will no longer be able to connect to the Server without manual re-
configuration of the Client.

A Client shall be careful when using the information returned from a DiscoveryEndpoint since it has
no security. A Client does this by comparing the information returned from the DiscoveryEndpoint
to the information returned in the CreateSession response. A Client shall verify that:

a) The ApplicationUri specified in the Server Certificate is the same as the ApplicationUri provided
in the EndpointDescription.

b) The Server Certificate returned in CreateSession response is the same as the Certificate used
to create the SecureChannel.

c) The EndpointDescriptions returned from the DiscoveryEndpoint are the same as the
EndpointDescriptions returned in the CreateSession response, but they may be in a different
order. For the content, the fields ApplicationUri, EndpointUrl, SecurityMode, SecurityPolicyUri,
UserldentityTokens, TransportProfileUri and SecurityLevel shall be compared for exact match.
All other fields are ignored for the comparison.

If the Client detects that one of the above requirements is not fulfilled, then the Client shall close
the SecureChannel and report an error.

A Client shall verify the HostName specified in the Server Certificate is the same as the HostName
contained in the endpointUrl provided in the EndpointDescription returned by CreateSession. If there
is a difference then the Client shall report the difference and may close the SecureChannel. Servers
shall add all possible HostNames like MyHost and MyHost.local into the Server Certificate. This
includes IP addresses of the host or the HostName exposed by a NAT router used to connect to the
Server.

1.05.04 12 OPC 10000-4: Services

5.5.2 FindServers
5.5.2.1 Description

This Service returns the Servers known to a Server or Discovery Server. The behaviour of Discovery
Servers is described in detail in OPC 10000-12.

The Client may reduce the number of results returned by specifying filter criteria. A Discovery Server
returns an empty list if no Servers match the criteria specified by the Client. The filter criteria
supported by this Service are described in 5.5.2.2.

Every Server shall provide a DiscoveryEndpoint that supports this Service. The Server shall always
return a record that describes itself, however in some cases more than one record may be returned.
Gateway Servers shall return a record for each Server that they provide access to plus (optionally)
a record that allows the Gateway Server to be accessed as an ordinary OPC UA Server. Non-
transparent redundant Servers shall provide a record for each Server in the RedundantServerSet.

Every Server shall have a globally unique identifier called the ServerUri. This identifier should be a
fully qualified domain name; however, it may be a GUID or similar construct that ensures global
uniqueness. The ServerUri returned by this Service shall be the same value that appears in index O
of the ServerArray property (see OPC 10000-5). The ServerUri is returned as the applicationUri field
in the ApplicationDescription (see 7.2).

Every Server shall also have a human readable identifier called the ServerName which is not
necessarily globally unique. This identifier may be available in multiple locales.

A Server may have multiple HostNames. For this reason, the Client shall pass the URL it used to
connect to the Endpoint to this Service. The implementation of this Service shall use this information
to return responses that are accessible to the Client via the provided URL.

This Service shall not require message security but it may require transport layer security.

Some Servers may be accessed via a Gateway Server and shall have a value specified for
gatewayServerUri in their ApplicationDescription (see 7.2). The discoveryUrls provided in
ApplicationDescription shall belong to the Gateway Server. Some Discovery Servers may return
multiple records for the same Server if that Server can be accessed via multiple paths.

This Service can be used without security and it is therefore vulnerable to Denial of Service (DOS)
attacks. A Server should minimize the amount of processing required to send the response for this
Service. This can be achieved by preparing the result in advance. The Server should also add a
short delay before starting processing of a request during high traffic conditions.

5.5.2.2 Parameters
Table 3 defines the parameters for the Service.

OPC 10000-4: Services 13 1.05.04

Table 3 — FindServers Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters. The authenticationToken is always null.

The authenticationToken shall be ignored if it is provided.

The type RequestHeader is defined in 7.33.

endpointUrl String The network address that the Client used to access the
DiscoveryEndpoint.

The Server uses this information for diagnostics and to determine what
URLSs to return in the response.

The Server should return a suitable default URL if it does not recognize
the HostName in the URL.

localelds [] Localeld List of locales to use.

The Server should return the applicationName in the
ApplicationDescription defined in 7.2 using one of the locales specified.
See locale negotiation in 5.4 which applies to this Service.

serverUris [] String List of Servers to return.

All known Servers are returned if the list is empty.

A serverUri matches the applicationUri from the ApplicationDescription

defined in 7.2.
Response
responseHeader ResponseHeader Common response parameters.
The ResponseHeader type is defined in 7.34.
servers] ApplicationDescription | List of Servers that meet criteria specified in the request.

This list is empty if no Servers meet the criteria.
The ApplicationDescription type is defined in 7.2.

5.5.2.3 Service results
Common StatusCodes are defined in Table 182.

5.5.3 FindServersOnNetwork
5.5.3.1 Description

This Service returns the Servers known to a Discovery Server. Unlike FindServers, this Service is
only implemented by Discovery Servers.

The Client may reduce the number of results returned by specifying filter criteria. An empty list is
returned if no Server matches the criteria specified by the Client.

This Service shall not require message security but it may require transport layer security.

Each time the Discovery Server creates or updates a record in its cache it shall assign a
monotonically increasing identifier to the record. This allows Clients to request records in batches
by specifying the identifier for the last record received in the last call to FindServersOnNetwork. To
support this the Discovery Server shall return records in numerical order starting from the lowest
record identifier. The Discovery Server shall also return the last time the counter was reset for
example due to a restart of the Discovery Server. If a Client detects that this time is more recent
than the last time the Client called the Service it shall call the Service again with a startingRecordld
of 0.

This Service can be used without security and it is therefore vulnerable to denial of service (DOS)
attacks. A Server should minimize the amount of processing required to send the response for this
Service. This can be achieved by preparing the result in advance.

1.05.04

5.5.3.2 Parameters

14 OPC 10000-4: Services

Table 4 defines the parameters for the Service.

Table 4 — FindServersOnNetwork Service Parameters

Name

Type

Description

Request

requestHeader

RequestHeader

Common request parameters. The authenticationToken is always null. The
authenticationToken shall be ignored if it is provided.
The type RequestHeader is defined in 7.33.

startingRecordld

Counter

Only records with an identifier greater than this number will be
returned.
Specify 0 to start with the first record in the cache.

maxRecordsToReturn

Uint32

The maximum number of records to return in the response.
0 indicates that there is no limit.

serverCapabilityFilter([]

String

List of Server capability filters. The set of allowed Server
capabilities are defined in OPC 10000-12.

Only records with all of the specified Server capabilities are
returned.

The comparison is case insensitive.

If this list is empty then no filtering is performed.

Response

responseHeader

ResponseHeader

Common response parameters.
The ResponseHeader type is defined in 7.34.

lastCounterResetTime

UtcTime

The last time the counters were reset.

servers|]

ServerOnNetwork

List of DNS service records that meet criteria specified in the
request.
This list is empty if no Servers meet the criteria.

recordld

uint32

A unique identifier for the record.
This can be used to fetch the next batch of Servers in a subsequent
call to FindServersOnNetwork.

serverName

String

The name of the Server specified in the mDNS announcement (see
OPC 10000-12).
This may be the same as the ApplicationName for the Server.

discoveryUrl

String

The URL of the DiscoveryEndpoint.

serverCapabilities

String[]

The set of Server capabilities supported by the Server.
The set of allowed Server capabilities are defined in OPC 10000-12.

5.5.3.3 Service results

Common StatusCodes are defined in Table 182.

5.5.4 GetEndpoints
5.5.4.1 Description
This Service returns the Endpoints supported by a Server and all of the configuration information

required to establish a SecureChannel and a Session.

This Service shall not require message security but it may require transport layer security.

A Client may reduce the number of results returned by specifying filter criteria based on Localelds
and Transport Profile URIs. The Server returns an empty list if no Endpoints match the criteria

specified by the Client. The filter criteria supported by this Service are described in 5.5.4.2.

A Server may support multiple security configurations for the same Endpoint. In this situation, the
Server shall return separate EndpointDescription records for each available configuration. Clients
should treat each of these configurations as distinct Endpoints even if the physical URL happens to

be the same.

The security configuration for an Endpoint has four components:

Server Application Instance Certificate

Message Security Mode

Security Policy

Supported User Identity Tokens

OPC 10000-4: Services 15 1.05.04

The ApplicationinstanceCertificate is used to secure the OpenSecureChannel request (see 5.6.2).
The MessageSecurityMode and the SecurityPolicy tell the Client how to secure messages sent via
the SecureChannel. The UserldentityTokens tell the Client which type of user credentials shall be
passed to the Server in the ActivateSession request (see 5.7.3).

If the securityPolicyUri is None and none of the UserTokenPolicies requires encryption, the Client
shall ignore the ApplicationinstanceCertificate. If the securityPolicyUri is not None or one of the
UserTokenPolicies requires encryption, the Server shall include the ApplicationinstanceCertificate
in the EndpointDescription.

Each EndpointDescription also specifies a URI for the Transport Profile that the Endpoint supports.
The Transport Profiles specify information such as message encoding format and protocol version
and are defined in OPC 10000-7.

Messages are secured by applying standard cryptography algorithms to the messages before they
are sent over the network. The exact set of algorithms used depends on the SecurityPolicy for the
Endpoint. OPC 10000-7 defines Profiles for common SecurityPolicies and assigns a unique URI to
them. It is expected that applications have built in knowledge of the SecurityPolicies that they
support, as a result, only the Profile URI for the SecurityPolicy is specified in the
EndpointDescription. A Client cannot connect to an Endpoint that does not support a SecurityPolicy
that it recognizes.

An EndpointDescription may specify that the message security mode is NONE. This configuration
is not recommended unless the applications are communicating on a physically isolated network
where the risk of intrusion is extremely small. If the message security is NONE then it is possible
for Clients to deliberately or accidentally hijack Sessions created by other Clients.

A Server may have multiple HostNames. For this reason, the Client shall pass the URL it used to
connect to the Endpoint to this Service. The implementation of this Service shall use this information
to return responses that are accessible to the Client via the provided URL.

This Service can be used without security and it is therefore vulnerable to Denial of Service (DOS)
attacks. A Server should minimize the amount of processing required to send the response for this
Service. This can be achieved by preparing the result in advance. The Server should also add a
short delay before starting processing of a request during high traffic conditions.

Some of the EndpointDescriptions returned in a response shall specify the Endpoint information for
a Gateway Server that can be used to access another Server. In these situations, the
gatewayServerUri is specified in the EndpointDescription and all security checks used to verify
Certificates shall use the gatewayServerUri (see 6.1.3) instead of the serverUri.

To connect to a Server via the gateway the Client shall first establish a SecureChannel with the
Gateway Server. Then the Client shall call the CreateSession service and pass the serverUri
specified in the EndpointDescription to the Gateway Server. The Gateway Server shall then connect
to the underlying Server on behalf of the Client. The process of connecting to a Server via a Gateway
Server is illustrated in Figure 10.

1.05.04 16 OPC 10000-4: Services

(] [e
Server

1 GetEndpoints()
[EndpointDescription[] J}
I
I
I
I
I
I
i
I
I
I
I
I

OpenSecureChannel()

‘!
L1

CreateSession() 1 OpenSecureChannel)

CreateSession()

Discovery Session Session
Endpoint Endpoint Endpoint

Figure 10 — Using a Gateway Server

5.5.4.2 Parameters
Table 5 defines the parameters for the Service.

Table 5 — GetEndpoints Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters.

The authenticationToken is always null. The authenticationToken shall be
ignored if it is provided.

The type RequestHeader is defined in 7.33.

endpointUrl String The network address that the Client used to access the
DiscoveryEndpoint.

The Server uses this information for diagnostics and to determine what
URLs to return in the response.

The Server should return a suitable default URL if it does not recognize the
HostName in the URL.

localelds [] Localeld List of locales to use.
See locale negotiation in 5.4 which applies to this Service.
profileUris] String List of Transport Profile that the returned Endpoints shall support. OPC

10000-7 defines URIs for the Transport Profiles.

All Endpoints are returned if the list is empty.

If the URI is a URL, this URL may have a query string appended. The
Transport Profiles that support query strings are defined in OPC 10000-7.

Response
responseHeader ResponseHeader Common response parameters.
The ResponseHeader type is defined in 7.34.
Endpoints [] EndpointDescription | List of Endpoints that meet criteria specified in the request.

This list is empty if no Endpoints meet the criteria.
The EndpointDescription type is defined in 7.14.

5.5.4.3 Service Results

Common StatusCodes are defined in Table 182.

5.5.5 RegisterServer
5.5.5.1 Description
This Service is implemented by Discovery Servers.

This Service registers a Server with a Discovery Server. This Service will be called by a Server or
a separate configuration utility. Clients will not use this Service.

A Server shall establish a SecureChannel with the Discovery Server before calling this Service. The
SecureChannel is described in 5.6. The Administrator of the Server shall provide the Server with an
EndpointDescription for the Discovery Server as part of the configuration process. Discovery

OPC 10000-4: Services 17 1.05.04

Servers shall reject registrations if the serverUri provided does not match the applicationUri in
Server Certificate used to create the SecureChannel.

This Service can only be invoked via SecureChannels that support Client authentication (i.e. HTTPS
cannot be used to call this Service).

A Server only provides its serverUri and the URLs of the DiscoveryEndpoints to the Discovery
Server. Clients shall use the GetEndpoints Service to fetch the most up to date configuration
information directly from the Server.

The Server shall provide a localized name for itself in all locales that it supports.

Servers shall be able to register themselves with a Discovery Server running on the same machine.
The exact mechanisms depend on the Discovery Server implementation and are described in OPC
10000-6.

There are two types of Server applications: those which are manually launched including a start by
the operating system at boot and those that are automatically launched when a Client attempts to
connect. The registration process that a Server shall use depends on which category it falls into.

The registration process for manually launched Servers is illustrated in Figure 11.

Administrator Server Discovery
Server

' ' ——

D Start N

Client

ReqisterServer >

Registration (IsOnline=True) FindServers()

timer expires

ReqgisterServer . o
(IsOnline=True) ApplicationDescriptions][]

expire, Servers must Remove expired ' < FindServers()

i registrations -
register at least once g Nothing to find

every 10 minutes

| ReqisterServer

|
I

|

1

|

1

|

Ll

'

1 . . .

' Online registrations
|

I

|

1

|

Ll

'

| -
' (IsOnline=True)

] o] IO

A4

(IsOnline=False)

A

Stop . .

D RegisterServer NG FindServers()
|

1

h

T Nothing to find

Figure 11 — The Registration Process — Manually Launched Servers

The registration process for automatically launched Servers is illustrated in Figure 12.

- . Discovery .
Administrator Server File System Server Client
' Install _ Create N ' Load E
D " Semaphore File D registrations| |

at startup

>
>

Check Semaphore|
Save registration

| FindServers()

Ij Check <
Semaphore File
) H Application
D Uninstall D Delete _D Descriptions]]
™ Semaphore File
1

FindServers()

<

1
RegisterServer 1
|

SN SRR A DO

The offline registration is deleted when the Check Semaphore
semaphore file is no longer available]

A Server may also mark its self off-line by I Delete Registration |
renaming or moving the semaphore file ' '

Figure 12 — The Registration Process — Automatically Launched Servers

1.05.04 18 OPC 10000-4: Services

The registration process is designed to be platform independent, robust and able to minimize
problems created by configuration errors. For that reason, Servers shall register themselves more
than once.

Under normal conditions, manually launched Servers shall periodically register with the Discovery
Server as long as they are able to receive connections from Clients. If a Server goes offline then it
shall register itself once more and indicate that it is going offline. The period of the recurring
registration should be configurable; however, the maximum is 10 minutes. If an error occurs during
registration (e.g. the Discovery Server is not running) then the Server shall periodically re-attempt
registration. The frequency of these attempts should start at 1 second but gradually increase until
the registration frequency is the same as what it would be if no errors occurred. The recommended
approach would be to double the period of each attempt until reaching the maximum.

When an automatically launched Server (or its install program) registers with the Discovery Server
it shall provide a path to a semaphore file which the Discovery Server can use to determine if the
Server has been uninstalled from the machine. The Discovery Server shall have read access to the
file system that contains the file.

5.5.5.2 Parameters

Table 6 defines the parameters for the Service.

Table 6 — RegisterServer Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters.

The authenticationToken is always null.
The type RequestHeader is defined in 7.33.

Server RegisteredServer The Server to register. The type RegisteredServer is defined in 7.32.
Response
ResponseHeader ResponseHeader Common response parameters.

The type ResponseHeader is defined in 7.34.

5.5.5.3 Service Results

Table 7 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 7 — RegisterServer Service Result Codes

Symbolic Id Description

Bad_InvalidArgument See Table 182 for the description of this result code.
Bad_ServerUrilnvalid See Table 182 for the description of this result code.
Bad_ServerNameMissing No ServerName was specified.
Bad_DiscoveryUrIMissing No discovery URL was specified.
Bad_SemaphoreFileMissing The semaphore file specified is not valid.

5.5.6 RegisterServer2
5.5.6.1 Description
This Service is implemented by Discovery Servers.

This Service allows a Server to register its DiscoveryUrls and capabilities with a Discovery Server.
It extends the registration information from RegisterServer with information necessary for
FindServersOnNetwork. This Service will be called by a Server or a separate configuration utility.
Clients will not use this Service.

Servers that support RegisterServer2 shall try to register with the Discovery Server using this
Service and shall fall back to RegisterServer if RegisterServer2 fails with the status
Bad_ServiceUnsupported.

A Discovery Server that implements this Service needs to assign unique record ids each time this
Service is called. See 5.5.3 for more details.

OPC 10000-4: Services

19 1.05.04

This Service can only be invoked via SecureChannels that support Client authentication (i.e. HTTPS
cannot be used to call this Service).

5.5.6.2 Parameters

Table 8 defines the parameters for the Service.

Table 8 — RegisterServer2

Name Type Description
Request
requestHeader RequestHeader Common request parameters.
The authenticationToken is always null.
The type RequestHeader is defined in 7.33.
Server RegisteredServer The Server to register. The type RegisteredServer is defined in 7.32.

discoveryConfiguration []

ExtensibleParameter
DiscoveryConfiguration

Additional configuration settings for the Server to register.

The discoveryConfiguration is an extensible parameter type defined
in 7.13.

Discovery Servers that do not understand a configuration shall return
Bad_NotSupported for this configuration.

Response
responseHeader ResponseHeader Common response parameters.
The type ResponseHeader is defined in 7.34.
configurationResults [] StatusCode List of results for the discoveryConfiguration parameters.

diagnosticinfos []

DiagnosticInfo

List of diagnostic information for the discoveryConfiguration
parameters. This list is empty if diagnostics information was not
requested in the request header or if no diagnostic information was
encountered in processing of the request.

5.5.6.3 Service results

Table 9 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 9 — RegisterServer2 Service Result Codes

Symbolic Id

Description

Bad_InvalidArgument

See Table 182 for the description of this result code.

Bad_ServerUrilnvalid

See Table 182 for the description of this result code.

Bad_ServerNameMissing

No ServerName was specified.

Bad_DiscoveryUrIMissing

No discovery URL was specified.

Bad_SemaphoreFileMissing

The semaphore file specified is not valid.

Bad_ServiceUnsupported

See Table 182 for the description of this result code.

5.5.6.4 StatusCodes

Table 10 defines values for the operation level configurationResults parameters that are specific to
this Service. Common StatusCodes are defined in Table 183.

Table 10 — RegisterServer2 Operation Level Result Codes

Symbolic Id

Description

Bad_NotSupported

See Table 183 for the description of this result code.

5.6 SecureChannel Service Set

5.6.1 Overview

This Service Set defines Services used to open a communication channel that ensures the
Confidentiality and Integrity of all Messages exchanged with the Server. The base concepts for OPC
UA security are defined in OPC 10000-2.

The SecureChannel Services are unlike other Services because they are not implemented directly
by the OPC UA Application. Instead, they are provided by the Communication Stack on which the
OPC UA Application is built. For example, an OPC UA Server may be built on a stack that allows
applications to establish a SecureChannel using HTTPS. In these cases, the OPC UA Application

1.05.04 20 OPC 10000-4: Services

shall verify that the Message it received was in the context of an HTTPS connection. OPC 10000-6
describes how the SecureChannel Services are implemented.

A SecureChannel is a long-running logical connection between a single Client and a single Server.
This channel maintains a set of keys known only to the Client and Server, which are used to sign
and encrypt Messages sent across the network to ensure Confidentiality and Integrity. The
SecureChannel Services allow the Client and Server to securely negotiate the keys to use.

Logical connections may be initiated by the Client or by the Server as described in OPC 10000-6.
After the connection is initiated, the SecureChannel is opened and closed by the Client using the
SecureChannel Services.

An EndpointDescription tells a Client how to establish a SecureChannel with a given Endpoint. A
Client may obtain the EndpointDescription from a Discovery Server, via some non-UA defined
directory server or from its own configuration.

The exact algorithms used to sign and encrypt Messages are described in the SecurityPolicy field
of the EndpointDescription. A Client shall use these algorithms when it creates a SecureChannel.

It should be noted that some SecurityPolicies defined in OPC 10000-7 will turn off authentication
and encryption resulting in a SecureChannel that provides no security.

When a Client and Server are communicating via a SecureChannel, they shall verify that all incoming
Messages have been signed and encrypted according to the requirements specified in the
EndpointDescription. An OPC UA Application shall not process any Message that does not conform
to these requirements.

The relationship between the SecureChannel and the OPC UA Application depends on the
implementation technology. OPC 10000-6 defines any requirements that depend on the technology
used.

The correlation between the OPC UA Application Session and the SecureChannel is illustrated in
Figure 13. The Communication Stack is used by the OPC UA Applications to exchange Messages.
In the first step, the SecureChannel Services are used to establish a SecureChannel between the
two Communication Stacks which allows the secure exchange of Messages. In the second step, the
OPC UA Applications use the Session Service Set to establish an OPC UA Application Session.

OPC UA Client OPC UA Server
o Session o
OPC UA Application €-----. > OPC UA Application
Communication Stack Communication Stack
SecureChannel
dl |

Figure 13 — SecureChannel and Session Services

Once a Client has established a Session it may wish to access the Session from a different
SecureChannel. The Client can do this by validating the new SecureChannel with the
ActivateSession Service described in 5.7.3.

If a Server acts as a Client to other Servers, which is commonly referred to as Server chaining, then
the Server shall be able to maintain user level security. By this we mean that the user identity should
be passed to the underlying Server or it should be mapped to an appropriate user identity in the
underlying Server. It is unacceptable to ignore user level security. This is required to ensure that
security is maintained and that a user does not obtain information that they should not have access

OPC 10000-4: Services 21 1.05.04

to. Whenever possible a Server should impersonate the original Client by passing the original
Client’s user identity to the underlying Server when it calls the ActivateSession Service. If
impersonation is not an option then the Server shall map the original Client’s user identity onto a
new user identity which the underlying Server does recognize.

5.6.2 OpenSecureChannel
5.6.2.1 Description

This Service is used to open or renew a SecureChannel that can be used to ensure Confidentiality
and Integrity for Message exchange during a Session. This Service requires the Communication
Stack to apply the various security algorithms to the Messages as they are sent and received.
Specific implementations of this Service for different Communication Stacks are described in OPC
10000-6.

Each SecureChannel has a globally-unique identifier and is valid for a specific combination of Client
and Server application instances. Each channel contains one or more SecurityTokens that identify
a set of cryptography keys that are used to encrypt and authenticate Messages. SecurityTokens
also have globally-unique identifiers which are attached to each Message secured with the token.
This allows an authorized receiver to know how to decrypt and verify the Message.

SecurityTokens have a finite lifetime negotiated with this Service. However, differences between the
system clocks on different machines and network latencies mean that valid Messages could arrive
after the token has expired. To prevent valid Messages from being discarded, the applications
should do the following:

a) Clients should request a new SecurityToken after 75 % of its lifetime has elapsed. This should
ensure that Clients will receive the new SecurityToken before the old one actually expires.

b) Servers shall use the existing SecurityToken to secure outgoing Messages until the
SecurityToken expires or the Server receives a Message secured with a new SecurityToken.
This should ensure that Clients do not reject Messages secured with the new SecurityToken that
arrive before the Client receives the new SecurityToken.

c) Clients should accept Messages secured by an expired SecurityToken for up to 25 % of the
token lifetime. This should ensure that Messages sent by the Server before the token expired
are not rejected because of network delays.

Each SecureChannel exists until it is explicitly closed or until the last token has expired and the
overlap period has elapsed. A Server application should limit the number of SecureChannels. To
protect against misbehaving Clients and denial of service attacks, the Server shall close the oldest
unused SecureChannel that has no Session assigned before reaching the maximum number of
supported SecureChannels. When Session-less Service invocation is done through a transport
mapping that requires the OpenSecureChannel Service, the Server shall maintain a last used time
for the SecureChannel to detect the oldest unused SecureChannel.

The OpenSecureChannel request and response Messages shall be signed with the sender's private
key. These Messages shall always be encrypted. If the transport layer does not provide encryption,
then these Messages shall be encrypted with the receiver's public key. These requirements for
OpenSecureChannel only apply if the securityPolicyUri is not None.

If the protocol defined in OPC 10000-6 requires that Application Instance Certificates are used in
the OpenSecureChannel Service, then Clients and Servers shall verify that the same Certificates
are used in the CreateSession and ActivateSession Services. Certificates are not provided and shall
not be verified if the securityPolicyUri is None.

If the securityPolicyUri is not None, a Client shall verify the HostName specified in the Server
Certificate is the same as the HostName contained in the endpointUrl. If there is a difference then
the Client shall report the difference and may choose to not open the SecureChannel. Servers shall
add all possible HostNames like MyHost and MyHost.mycompany.com into the Server Certificate.
This includes IP addresses of the host or the HostName exposed by a NAT router used to connect
to the Server. Servers shall not append the 'local’ top level domain to any domains declared in their
Certificate; an unqualified domain name is used if a more appropriate qualifier does not exist. Clients
using a URL returned from an LDS-ME shall remove the ‘'local’ top level domain when checking the
domain against the Server Certificate.

1.05.04 22 OPC 10000-4: Services

Clients should be prepared to replace the HostName and port returned in the EndpointDescription
with the HostName or the IP addresses and the port they used to call GetEndpoints. The Client shall
still execute the HostName verification comparing the HostName used by the Client to create the
SecureChannel with the HostName list in the Server Certificate. See Table 106 for more details.
5.6.2.2 Parameters

Table 11 defines the parameters for the Service.

Unlike other Services, the parameters for this Service provide only an abstract definition. The
concrete representation on the network depends on the mappings defined in OPC 10000-6.

Table 11 — OpenSecureChannel Service Parameters

Name

Type

Description

Request

requestHeader

RequestHeader

Common request parameters. The authenticationToken is always null.
The type RequestHeader is defined in 7.33.

clientCertificate

Applicationinstance
Certificate

A Certificate that identifies the Client.

The OpenSecureChannel request shall be signed with the private key for
this Certificate.

The ApplicationinstanceCertificate type is defined in 7.3.

If the securityPolicyUri is None, the Server shall ignore the
ApplicationinstanceCertificate.

requestType

Enum
SecurityToken
RequestType

The type of SecurityToken request:
An enumeration that shall be one of the following:
ISSUE creates a new SecurityToken for a new SecureChannel.
RENEW creates a new SecurityToken for an existing
SecureChannel.

secureChannelld

BaseDataType

The identifier for the SecureChannel that the new token should belong
to. This parameter shall be null when creating a new SecureChannel.

The concrete security protocol definition in OPC 10000-6 chooses the
concrete DataType.

securityMode

Enum
MessageSecurityMode

The type of security to apply to the messages.

The type MessageSecurityMode type is defined in 7.20.

A SecureChannel may need to be created even if the securityMode is
NONE. The exact behaviour depends on the mapping used and is
described in the OPC 10000-6.

securityPolicyUri

String

The URI for SecurityPolicy to use when securing messages sent over
the SecureChannel.

The set of known URIs and the SecurityPolicies associated with them
are defined in OPC 10000-7.

clientNonce

ByteString

A random number that shall not be used in any other request. A new
clientNonce shall be generated for each time a SecureChannel is
renewed.

This parameter shall have a length equal to the
SecureChannelNonceLength defined for the SecurityPolicy in OPC
10000-7. The SecurityPolicy is identified by the securityPolicyUri.

requestedLifetime

Duration

The requested lifetime, in milliseconds, for the new SecurityToken. It
specifies when the Client expects to renew the SecureChannel by calling
the OpenSecureChannel Service again. If a SecureChannel is not
renewed, then all Messages sent using the current SecurityTokens shall
be rejected by the receiver.

Several cryptanalytic attacks become easier as more material encrypted
with a specific key is available. By limiting the amount of data processed
using a particular key, those attacks are made more difficult. Therefore
the volume of data exchanged between Client and Server shall be
limited by establishing a new SecurityToken after the lifetime.

The setting of the requested lifetime depends on the expected number of
exchanged messages and their size in the lifetime. A higher volume of
data requires shorter lifetime.

OPC 10000-4: Services

23 1.05.04

Response

responseHeader

ResponseHeader

Common response parameters (see 7.34 for ResponseHeader type
definition).

securityToken

ChannelSecurityToken

Describes the new SecurityToken issued by the Server. This structure is
defined in-line with the following indented items.

channelld

BaseDataType

A unique identifier for the SecureChannel. This is the identifier that shall
be supplied whenever the SecureChannel is renewed.

The concrete security protocol definition in OPC 10000-6 chooses the
concrete DataType.

tokenld

ByteString

A unique identifier for a single SecurityToken within the channel. This is
the identifier that shall be passed with each Message secured with the
SecurityToken.

createdAt

UtcTime

The time when the SecurityToken was created.

revisedLifetime

Duration

The lifetime of the SecurityToken in milliseconds. The UTC expiration
time for the token may be calculated by adding the lifetime to the
createdAt time.

The revised lifetime shall be used by the Client to renew a
SecureChannel before it expires even if the MessageSecurityMode is
NONE.

serverNonce

ByteString

A random number that shall not be used in any other request. A new
serverNonce shall be generated for each time a SecureChannel is
renewed.

This parameter shall have a length equal to the
SecureChannelNonceLength defined for the SecurityPolicy in OPC
10000-7. The SecurityPolicy is identified by the securityPolicyUri.

5.6.2.3 Service results

Table 12 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 12 — OpenSecureChannel Service Result Codes

Symbolic Id

Description

Bad_SecurityChecksFailed

See Table 182 for the description of this result code.

Bad_CertificateTimelnvalid

See Table 182 for the description of this result code.

Bad_CertificatelssuerTimelnvalid

See Table 182 for the description of this result code.

Bad_CertificateHostNamelnvalid

See Table 182 for the description of this result code.

Bad_CertificateUrilnvalid

See Table 182 for the description of this result code.

Bad_CertificateUseNotAllowed

See Table 182 for the description of this result code.

Bad_CertificatelssuerUseNotAllowed

See Table 182 for the description of this result code.

Bad_CertificateUntrusted

See Table 182 for the description of this result code.

Bad_CertificateRevocationUnknown

See Table 182 for the description of this result code.

Bad_CertificatelssuerRevocationUnknown

See Table 182 for the description of this result code.

Bad_CertificateRevoked

See Table 182 for the description of this result code.

Bad_CertificatelssuerRevoked

See Table 182 for the description of this result code.

Bad_RequestTypelnvalid

The SecurityToken request type is not valid.

Bad_SecurityModeRejected

The security mode does not meet the requirements set by the server.

Bad_SecurityPolicyRejected

The security policy does not meet the requirements set by the Server.

Bad_SecureChannelldinvalid

See Table 182 for the description of this result code.

Bad_Noncelnvalid

See Table 182 for the description of this result code.

A Server shall check the minimum length of the Client nonce and return this
status if the length is below 32 bytes. A check for duplicated nonce can only
be done in OpenSecureChannel calls with the request type RENEW.

5.6.3 CloseSecureChannel
5.6.3.1 Description

This Service is used to terminate a SecureChannel.

The request Messages shall be signed with the appropriate key associated with the current token

for the SecureChannel.

5.6.3.2 Parameters
Table 13 defines the parameters for the Service.

Specific protocol mappings defined in OPC 10000-6 may choose to omit the response.

1.05.04 24 OPC 10000-4: Services

Table 13 — CloseSecureChannel Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters. The authenticationToken is always null.
The type RequestHeader is defined in 7.33.
secureChannelld BaseDataType The identifier for the SecureChannel to close.

The concrete security protocol definition in OPC 10000-6 chooses the
concrete DataType.

Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).

5.6.3.3 Service results

Table 14 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 14 — CloseSecureChannel Service Result Codes

Symbolic Id Description
Bad_SecureChannelldinvalid See Table 182 for the description of this result code.

5.7 Session Service Set
5.7.1 Overview

This Service Set defines Services for an application layer connection establishment in the context
of a Session.

5.7.2 CreateSession
5.7.2.1 Description

This Service is used by an OPC UA Client to create a Session and the Server returns two values
which uniquely identify the Session. The first value is the sessionld which is used to identify the
Session in the audit logs and in the Server’s AddressSpace. The second is the authenticationToken
which is used to associate an incoming request with a Session.

Before calling this Service, the Client shall create a SecureChannel with the OpenSecureChannel
Service to ensure the Integrity of all Messages exchanged during a Session. This SecureChannel
has a unique identifier which the Server shall associate with the authenticationToken. The Server
may accept requests with the authenticationToken only if they are associated with the same
SecureChannel that was used to create the Session. The Client may associate a new
SecureChannel with the Session by calling ActivateSession. For the N Sessions supported by a
Server, the Server shall support N+1 SecureChannels. A Server may support multiple Sessions for
one SecureChannel.

The SecureChannel is always managed by the Communication Stack which means it shall provide
APIs which the Server can use to find out information about the SecureChannel used for any given
request. The Communication Stack shall, at a minimum, provide the SecurityPolicy and
SecurityMode used by the SecureChannel. It shall also provide a SecureChannelld which uniquely
identifies the SecureChannel or the Client Certificate used to establish the SecureChannel. The
Server uses one of these to identify the SecureChannel used to send a request. Clause 7.36
describes how to create the authenticationToken for different types of Communication Stack.

Depending upon on the SecurityPolicy and the SecurityMode of the SecureChannel, the exchange
of ApplicationlnstanceCertificates and Nonces may be optional and the signatures may be empty.
See OPC 10000-7 for the definition of SecurityPolicies and the handling of these parameters.

The Server returns its EndpointDescriptions in the response. Clients use this information to
determine whether the list of EndpointDescriptions returned from the DiscoveryEndpoint matches
the Endpoints that the Server has. If there is a difference then the Client shall close the Session
and report an error. The Server returns all EndpointDescriptions for the serverUri specified by the
Client in the request. The Client only verifies EndpointDescriptions with a transportProfileUri that

OPC 10000-4: Services 25 1.05.04

matches the profileUri specified in the original GetEndpoints request. A Client may skip this check
if the EndpointDescriptions were provided by a trusted source such as the Administrator.

The Session created with this Service shall not be used until the Client calls the ActivateSession
Service and proves possession of its Application Instance Certificate and any user identity token
that it provided.

A Server application should limit the number of Sessions. To protect against misbehaving Clients
and denial of service attacks, the Server shall close the oldest Session that is not activated before
reaching the maximum number of supported Sessions.

The SoftwareCertificates parameter in the Server response is deprecated to reduce the message
size for OPC UA Applications with limited resources. The SoftwareCertificates are provided in the
Server’s AddressSpace as defined in OPC 10000-5. A SoftwareCertificate identifies the capabilities
of the Server and also contains the list of OPC UA Profiles supported by the Server. OPC UA Profiles
are defined in OPC 10000-7.

Additional Certificates issued by other organizations may be included to identify additional Server
capabilities. Examples of these Profiles include support for specific information models and support
for access to specific types of devices.

When a Session is created, the Server adds an entry for the Client in its SessionDiagnosticsArray
Variable. See OPC 10000-5 for a description of this Variable.

Sessions are created to be independent of the underlying communications connection. Therefore, if
a communications connection fails, the Session is not immediately affected. When the
communication connection fails, the Client should try to create a new communication connection
and call ActivateSession again. See 6.7 for more details.

Sessions are terminated by the Server automatically if the Client fails to issue a Service request on
the Session within the timeout period negotiated by the Server in the CreateSession Service
response. This protects the Server against Client failures and against situations where a failed
underlying connection cannot be re-established. Clients shall be prepared to submit requests in a
timely manner to prevent the Session from closing automatically. Clients may explicitly terminate
Sessions using the CloseSession Service.

When a Session is terminated, all outstanding requests on the Session are aborted and
Bad_SessionClosed StatusCodes are returned to the Client. In addition, the Server deletes the entry
for the Client from its SessionDiagnosticsArray Variable and notifies any other Clients who were
subscribed to this entry.

If a Client invokes the CloseSession Service then all Subscriptions associated with the Session are
also deleted if the deleteSubscriptions flag is set to TRUE. If a Server terminates a Session for any
other reason, Subscriptions associated with the Session, are not deleted. Each Subscription has its
own lifetime to protect against data loss in the case of a Session termination. In these cases, the
Subscription can be reassigned to another Client before its lifetime expires.

Some Servers, such as aggregating Servers, also act as Clients to other Servers. These Servers
typically support more than one system user, acting as their agent to the Servers that they represent.
Security for these Servers is supported at two levels.

First, each OPC UA Service request contains a string parameter that is used to carry an audit record
id. A Client, or any Server operating as a Client, such as an aggregating Server, can create a local
audit log entry for a request that it submits. This parameter allows the Client to pass the identifier
for this entry with the request. If the Server also maintains an audit log, then it can include this id in
the audit log entry that it writes. When the log is examined and the entry is found, the examiner will
be able to relate it directly to the audit log entry created by the Client. This capability allows for
traceability across audit logs within a system. See OPC 10000-2 for additional information on
auditing. A Server that maintains an audit log shall provide the information in the audit log entries
via event Messages defined in this document. The Server may choose to only provide the Audit
information via event Messages. The Audit EventType is defined in OPC 10000-3.

1.05.04 26 OPC 10000-4: Services

Second, these aggregating Servers may open independent Sessions to the underlying Servers for
each Client that accesses data from them. Figure 14 illustrates this concept.

Clients typically support a The aggregating server establishes a
single system user separate session to its underlying
servers for each of its users.
OPC UA
Client OPC UA
OPC UA P R Aggregating /
Client [~| OPCUA
Server \
OPC UA Server
Client \ . /
Sessions

Figure 14 — Multiplexing users on a Session

5.7.2.2 Parameters
Table 15 defines the parameters for the Service.

OPC 10000-4: Services

27 1.05.04

Table 15 — CreateSession Service Parameters
Name Type Description
Request

requestHeader RequestHeader Common request parameters. The authenticationToken is always null.
The type RequestHeader is defined in 7.33.

clientDescription Application Information that describes the Client application.

Description The type ApplicationDescription is defined in 7.2.

serverUri String This value is only specified if the EndpointDescription has a gatewayServerUri.
This value is the applicationUri from the EndpointDescription which is the
applicationUri for the underlying Server. The type EndpointDescription is defined in
7.14.

endpointUrl String The network address that the Client used to access the Session Endpoint.
The Server uses this information for diagnostics and to determine what URLs to
return in the response.
The Server should return a suitable default URL if it does not recognize the
HostName in the URL

sessionName String Human readable string that identifies the Session. The Server makes this name and
the sessionld visible in its AddressSpace for diagnostic purposes. The Client should
provide a name that is unique for the instance of the Client.
If this parameter is null or empty the Server shall assign a value.

clientNonce ByteString A random number that should never be used in any other request. This number shall

have a length between 32 and 128 bytes inclusive. The Server shall check the
length.

The Server shall use this value to prove possession of its Application Instance
Certificate in the response.

clientCertificate

Applicationinstance

The Application Instance Certificate issued to the Client.

Certificate The ApplicationinstanceCertificate type is defined in 7.3.

If the securityPolicyUri is None, the Server shall ignore the
ApplicationinstanceCertificate.
If the SecurityMode is not None, a Client shall prove possession by using the private
key to create a Signature using the Nonce provided by the Server in the response.
If the SecurityMode is not None, the Server shall verify that this Application Instance
Certificate is the same as the one it used to create the SecureChannel.

Requested Duration Requested maximum number of milliseconds that a Session should remain open

SessionTimeout without activity. If the Client fails to issue a Service request within this interval, then
the Server shall automatically terminate the Client Session.

maxResponse Uint32 The maximum size, in bytes, for the body of any response message.

MessageSize The Server should return a Bad_ResponseToolLarge service fault if a response
message exceeds this limit.
The value zero indicates that this parameter is not used.
The transport protocols defined in OPC 10000-6 may imply minimum message sizes.
More information on the use of this parameter is provided in 5.3.

Response

responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader type).

sessionld Nodeld A unique Nodeld assigned by the Server to the Session. This identifier is used to
access the diagnostics information for the Session in the Server AddressSpace. It is
also used in the audit logs and any events that report information related to the
Session. The Session diagnostic information is described in OPC 10000-5. Audit
logs and their related events are described in 6.5.

authentication Session A unique identifier assigned by the Server to the Session. This identifier shall be

Token AuthenticationToken | passed in the RequestHeader of each request and is used with the SecureChannelld
to determine whether a Client has access to the Session. This identifier shall not be
reused in a way that the Client or the Server has a chance of confusing them with a
previous or existing Session.
The SessionAuthenticationToken type is described in 7.36.

revisedSession Duration Actual maximum number of milliseconds that a Session shall remain open without

Timeout activity. The Server should attempt to honour the Client request for this parameter,
but may negotiate this value up or down to meet its own constraints.

serverNonce ByteString A random number that should never be used in any other request.
This number shall have a length between 32 and 128 bytes inclusive . The Client
shall check the length.
The Client shall use this value to prove possession of its Application Instance
Certificate in the ActivateSession request.
This value may also be used to prove possession of the userldentityToken it
specified in the ActivateSession request.

serverCertificate Applicationinstance The Application Instance Certificate issued to the Server.

Certificate

A Server shall prove possession by using the private key to sign the Nonce provided
by the Client in the request. For SecureChannels that use the Application Instance
Certificate the Client shall verify that this Certificate is the same as the one it used to
create the SecureChannel.

The ApplicationinstanceCertificate type is defined in 7.3.

1.05.04

28 OPC 10000-4: Services

Name Type

Description

If the securityPolicyUri is None and none of the UserTokenPolicies requires
encryption, the Client shall ignore the ApplicationinstanceCertificate.

serverEndpoints []

EndpointDescription

List of Endpoints that the Server supports.

The Server shall return a set of EndpointDescriptions available for the serverUri
specified in the request. All Endpoints are returned if the serverUri is null or empty.
The EndpointDescription type is defined in 7.14. If the Client used a
DiscoveryEndpoint to select the security options from the available
EndpointDescriptions, the Client shall verify this list with the list from a
DiscoveryEndpoint. If the Client has the security options configured for the
connection to the Server, it uses this configuration and ignores the list.

A Client shall compare only the EndpointDescriptions that match the
transportProfileUri of the current SecureChannel. It is recommended that Servers
only include the server.applicationUri, endpointUrl, securityMode, securityPolicyUri,
userldentityTokens, transportProfileUri and securityLevel with all other parameters
set to null or empty. Only the recommended parameters shall be verified by the
Client.

serverSoftware
Certificates []

SignedSoftware
Certificate

This parameter is no longer used and the array shall be empty.
The SoftwareCertificates are provided in the Server AddressSpace as defined in
OPC 10000-5.

serverSignature SignatureData

This is a signature generated with the private key associated with the
serverCertificate. This parameter is calculated by appending the clientNonce to the
clientCertificate and signing the resulting sequence of bytes.

If the clientCertificate contains a chain, the signature calculation shall be done only
with the leaf Certificate. For backward compatibility a Client shall check the signature
with the full chain if the check with the leaf Certificate fails.

The SignatureAlgorithm shall be the AsymmetricSignatureAlgorithm specified in the
SecurityPolicy for the Endpoint.

The SignatureData type is defined in 7.37.

The clientCertificate shall be validated according to the rules in 6.1.3 even if the
Server chooses to allow connections from untrusted Clients. This validation may
have occurred when the SecureChannel was established and does not need to be
repeated.

The Signature is not generated if the SecurityMode is None.

maxRequest UiInt32

MessageSize

The maximum size, in bytes, for the body of any request message.

The Client Communication Stack should return a Bad_RequestToolLarge error to the
application if a request message exceeds this limit.

The value zero indicates that this parameter is not used.

See OPC 10000-6 for protocol specific minimum or default values.

5.3 provides more information on the use of this parameter.

5.7.2.3 Service results

Table 16 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 16 —

CreateSession Service Result Codes

Symbolic Id

Description

Bad_SecureChannelldinvalid

See Table 182 for the description of this result code.

Bad_Noncelnvalid

See Table 182 for the description of this result code.

A Server shall check the length of the Client nonce and return this status if the length
is less than 32 bytes or greater than 128 bytes. A check for a duplicated nonce is
optional and requires access to the nonce used to create the secure channel.

Bad_SecurityChecksFailed

See Table 182 for the description of this result code.

Bad_CertificateTimelnvalid

See Table 182 for the description of this result code.

Bad_CertificatelssuerTimelnvalid

See Table 182 for the description of this result code.

Bad_CertificateHostNamelnvalid

See Table 182 for the description of this result code.

Bad_CertificateUrilnvalid

See Table 182 for the description of this result code.

Bad_CertificateUseNotAllowed

See Table 182 for the description of this result code.

Bad_ CertificatelssuerUseNotAllowed

See Table 182 for the description of this result code.

Bad_CertificateUntrusted

See Table 182 for the description of this result code.

Bad_CertificateRevocationUnknown

See Table 182 for the description of this result code.

Bad_CertificatelssuerRevocationUnknown

See Table 182 for the description of this result code.

Bad_CertificateRevoked

See Table 182 for the description of this result code.

Bad_CertificatelssuerRevoked

See Table 182 for the description of this result code.

Bad_TooManySessions

The Server has reached its maximum number of Sessions.

Bad_ServerUrilnvalid

See Table 182 for the description of this result code.

Bad_SecurityPolicyRejected

See Table 182 for the description of this result code.

OPC 10000-4: Services 29 1.05.04

5.7.3 ActivateSession
5.7.3.1 Description

This Service is used by the Client to specify the identity of the user associated with the Session.
This Service request shall be issued by the Client before it issues any Service request other than
CloseSession after CreateSession. Failure to do so shall cause the Server to close the Session.

Whenever the Client calls this Service the Client shall prove that it is the same application that
called the CreateSession Service. The Client does this by creating a signature with the private key
associated with the clientCertificate specified in the CreateSession request. This signature is
created by appending the last serverNonce provided by the Server to the serverCertificate and
calculating the signature of the resulting sequence of bytes.

Once used, a serverNonce cannot be used again. For that reason, the Server returns a new
serverNonce each time the ActivateSession Service is called.

When the ActivateSession Service is called for the first time then the Server shall reject the request
if the SecureChannel is not same as the one associated with the CreateSession request.
Subsequent calls to ActivateSession may be associated with different SecureChannels. If this is the
case then the Server shall verify that the Certificate the Client used to create the new
SecureChannel is the same as the Certificate used to create the original SecureChannel. In addition,
the Server shall verify that the Client supplied a UserldentityToken that is identical to the token
currently associated with the Session. Once the Server accepts the new SecureChannel it shall
reject requests sent via the old SecureChannel.

The ActivateSession Service is used to associate a user identity with a Session. When a Client
provides a user identity then it shall provide proof that it is authorized to use that user identity. The
exact mechanism used to provide this proof depends on the type of the UserldentityToken. If the
token is a UserNameldentityToken then the proof is the password that is included in the token. If
the token is an X509ldentityToken then the proof is a signature generated with private key
associated with the Certificate. The data to sign is created by appending the last serverNonce to
the serverCertificate specified in the CreateSession response. If a token includes a secret then it
should be encrypted using the public key from the serverCertificate.

Servers shall take proper measures to protect against attacks on user identity tokens. Such an
attack is assumed if repeated connection attempts with invalid user identity tokens happen. One
option is to lock out an OPC UA Client for a period of time if the user identity token validation fails
several times. The OPC UA Client is either detected by IP address for unsecured connections or by
the ApplicationinstanceUri for secured connections. Another option is delaying the Service response
when the validation of a user identity fails. This delay time could be increased with repeated failures.
Sporadic failures shall not delay connections with valid tokens.

Clients can change the identity of a user associated with a Session by calling the ActivateSession
Service. The Server validates the signatures provided with the request and then validates the new
user identity. If no errors occur the Server replaces the user identity for the Session. Changing the
user identity for a Session may cause discontinuities in active Subscriptions because the Server
may need to tear down connections to an underlying system and re-establish them using the new
credentials. A Server shall re-evaluate the permissions of all Monitoredltems in Subscriptions
assigned to the Session after a user identity change.

When a Client supplies a list of locale ids in the request, each locale id is required to contain the
language component. It may optionally contain the <country/region> component. When the Server
returns a LocalizedText in the context of the Session, it also may return both the language and the
country/region or just the language as its default locale id.

When a Server returns a string to the Client, it first determines if there are available translations for
it. If there are, then the Server returns the string whose locale id exactly matches the locale id with
the highest priority in the Client-supplied list.

If there are no exact matches, then the Server ignores the <country/region> component of the locale
id, and returns the string whose <language> component matches the <language> component of the
locale id with the highest priority in the Client supplied list.

1.05.04 30 OPC 10000-4: Services

If there still are no matches, then the Server returns the string that it has along with the locale id.

A Gateway Server is expected to impersonate the user provided by the Client when it connects to
the underlying Server. This means it shall re-calculate the signatures on the UserldentityToken using
the nonce provided by the underlying Server. The Gateway Server shall use its own user credentials
if the UserldentityToken provided by the Client does not support impersonation.

5.7.3.2 Parameters
Table 17 defines the parameters for the Service.

Table 17 — ActivateSession Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters. The type RequestHeader is defined in 7.33.

clientSignature

SignatureData

This is a signature generated with the private key associated with the
clientCertificate. This parameter is calculated by appending the
serverNonce to the serverCertificate and signing the resulting sequence of
bytes.

If the serverCertificate contains a chain, the signature calculation shall be
done only with the leaf Certificate. For backward compatibility a Server
shall check the signature with the full chain if the check with the leaf
Certificate fails.

The SignatureAlgorithm shall be the AsymmetricSignatureAlgorithm
specified in the SecurityPolicy for the Endpoint.

The SignatureData type is defined in 7.37.

clientSoftwareCertificates [| | SignedSoftware Reserved for future use.
Certificate The SignedSoftwareCertificate type is defined in 7.38.
localelds [] Localeld List of locale ids to use. See locale negotiation in 5.4 which applies to this
Service.
This parameter only needs to be specified during the first call to
ActivateSession during a single application Session. If it is null or empty the
Server shall keep using the current localelds for the Session.
userldentityToken Extensible The credentials of the user associated with the Client application. The
Parameter Server uses these credentials to determine whether the Client should be

UserldentityToken

allowed to activate a Session and what resources the Client has access to
during this Session.

The UserldentityToken is an extensible parameter type defined in 7.41.
The EndpointDescription specifies what UserldentityTokens the Server
shall accept.

Null or empty user token shall always be interpreted as anonymous.

userTokenSignature

SignatureData

If the Client specified a user identity token that supports digital signatures,
then it shall create a signature and pass it as this parameter. Otherwise the
parameter is null or empty.

The SignatureAlgorithm depends on the identity token type.

The SignatureData type is defined in 7.37.

Response

responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).

serverNonce ByteString A random number that should never be used in any other request.
This number shall have a length between 32 and 128 bytes inclusive. The
Client shall check the length.
The Client shall use this value to prove possession of its Application
Instance Certificate in the next call to ActivateSession request.

results [] StatusCode List of validation results for the SoftwareCertificates (see 7.39 for

StatusCode definition).

diagnosticInfos []

Diagnosticlnfo

List of diagnostic information associated with SoftwareCertificate validation
errors (see 7.12 for Diagnosticlnfo definition). This list is empty if
diagnostics information was not requested in the request header or if no
diagnostic information was encountered in processing of the request.

5.7.3.3 Service results

Table 18 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

OPC 10000-4: Services

31 1.05.04

Table 18 — ActivateSession Service Result Codes

Symbolic Id

Description

Bad_ldentityTokenlnvalid

See Table 182 for the description of this result code.

Bad_IdentityTokenRejected

See Table 182 for the description of this result code.

Bad_UserAccessDenied

See Table 182 for the description of this result code.

Bad_ApplicationSignaturelnvalid

The signature provided by the Client application is missing or invalid.

Bad_UserSignaturelnvalid

The user token signature is missing or invalid.

Bad_NoValidCertificates

The Client did not provide at least one Software Certificate that is valid and meets the
profile requirements for the Server.

Bad_ldentityChangeNotSupported

The Server does not support changing the user identity assigned to the session.

Bad_SecurityPolicyRejected

See Table 182 for the description of this result code.

Good_PasswordChangeRequired

The log-on for the user succeeded but the user is required to change the password.

The activated Session has limited rights and is mainly available to change the password.
The detailed definitions for UserManagement, restrictions for Sessions and the Method
ChangePassword used to set a new password are defined in OPC 10000-18. This result
code is only used by Servers that support the Method ChangePassword.

5.7.4 CloseSession
5.7.4.1 Description

This Service is used to terminate a Session. The Server takes the following actions when it receives

a CloseSession request:

a) It stops accepting requests for the Session. All subsequent requests received for the Session

are discarded.

b) It returns negative responses with the StatusCode Bad_SessionClosed to all requests that are
currently outstanding to provide for the timely return of the CloseSession response. Clients are
urged to wait for all outstanding requests to complete before submitting the CloseSession

request.

c) It removes the entry for the Client in its SessionDiagnosticsArray Variable.

When the CloseSession Service is called before the Session is successfully activated, the Server
shall reject the request if the SecureChannel is not the same as the one associated with the

CreateSession request.

5.7.4.2 Parameters

Table 19 defines the parameters for the Service.

Table 19 — CloseSession Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
deleteSubscriptions Boolean If the value is TRUE, the Server deletes all Subscriptions associated with the
Session. If the value is FALSE, the Server keeps the Subscriptions associated
with the Session until they timeout based on their own lifetime.
Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).

5.7.4.3 Service results

Table 20 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 20 — CloseSession Service Result Codes

Symbolic Id

Description

Bad_Sessionldinvalid

See Table 182 for the description of this result code.

1.05.04 32 OPC 10000-4: Services

5.7.5 Cancel
5.7.5.1 Description

This Service is used to cancel outstanding Service requests. Successfully cancelled service
requests shall respond with Bad_RequestCancelledByClient.

5.7.5.2 Parameters
Table 21 defines the parameters for the Service.

Table 21 — Cancel Service Parameters

Name Type Description

Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
requestHandle Integerld The requestHandle assigned to one or more requests that should be cancelled.

All outstanding requests with the matching requestHandle shall be cancelled.

Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).
cancelCount Uint32 Number of cancelled requests.

5.7.5.3 Service results
Common StatusCodes are defined in Table 182.

5.8 NodeManagement Service Set
5.8.1 Overview

This Service Set defines Services to add and delete AddressSpace Nodes and References between
them. All added Nodes continue to exist in the AddressSpace even if the Client that created them
disconnects from the Server.

Calls to NodeManagement Services may result in changes to the AddressSpace in addition to the
requested change. The actual behaviour is Server specific.

5.8.2 AddNodes
5.8.2.1 Description

This Service is used to add one or more Nodes into the AddressSpace hierarchy. Using this Service,
each Node is added as the TargetNode of a HierarchicalReference to ensure that the AddressSpace
is fully connected and that the Node is added as a child within the AddressSpace hierarchy (see
OPC 10000-3).

When a Server creates an instance of a TypeDefinitionNode it shall create the same hierarchy of
Nodes beneath the new Object or Variable depending on the ModellingRule of each
InstanceDeclaration. All Nodes with a ModellingRule of Mandatory shall be created or an existing
Node shall be referenced that conforms to the InstanceDeclaration. The creation of Nodes with other
ModellingRules is Server specific.

5.8.2.2 Parameters
Table 22 defines the parameters for the Service.

OPC 10000-4: Services

33 1.05.04

Table 22 — AddNodes Service Parameters
Name Type Description
Request
requestHeader RequestHeader | Common request parameters (see 7.33 for RequestHeader definition).
nodesToAdd [] AddNodesltem List of Nodes to add. All Nodes are added as a Reference to an existing Node
using a hierarchical ReferenceType. This structure is defined in-line with the
following indented items.
parentNodeld Expanded ExpandedNodeld of the parent Node for the Reference. The ExpandedNodeld
Nodeld type is defined in 7.16.
referenceTypeld Nodeld Nodeld of the hierarchical ReferenceType to use for the Reference from the
parent Node to the new Node.
requestedNewNodeld Expanded Client requested expanded Nodeld of the Node to add. The serverindex in the
Nodeld expanded Nodeld shall be 0.

If the Server cannot use this Nodeld, it rejects this Node and returns the
appropriate error code.

If the Client does not want to request a Nodeld, then it sets the value of this
parameter to the null expanded Nodeld.

If the Node to add is a ReferenceType Node, its Nodeld should be a numeric
id. See OPC 10000-3 for a description of ReferenceType Nodelds.

browseName QualifiedName The browse name of the Node to add.
nodeClass NodeClass NodeClass of the Node to add.
nodeAttributes Extensible The Attributes that are specific to the NodeClass. The NodeAttributes
Parameter parameter type is an extensible parameter type specified in 7.24.
NodeAttributes A Client is allowed to omit values for some or all Attributes. If an Attribute value
is null, the Server shall use the default values from the TypeDefinitionNode. If a
TypeDefinitionNode was not provided the Server shall choose a suitable default
value.
The Server may still add an optional Attribute to the Node with an appropriate
default value even if the Client does not specify a value.
typeDefinition Expanded Nodeld of the TypeDefinitionNode for the Node to add. This parameter shall be
Nodeld null for all NodeClasses other than Object and Variable in which case it shall be
provided.
Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header
results [] AddNodesResult | List of results for the Nodes to add. The size and order of the list matches the
size and order of the nodesToAdd request parameter. This structure is defined
in-line with the following indented items.
statusCode StatusCode StatusCode for the Node to add (see 7.39 for StatusCode definition).
addedNodeld Nodeld Server assigned Nodeld of the added Node. Null Nodeld if the operation failed.

diagnosticinfos []

Diagnosticinfo

List of diagnostic information for the Nodes to add (see 7.12 for Diagnosticlnfo
definition). The size and order of the list matches the size and order of the
nodesToAdd request parameter. This list is empty if diagnostics information
was not requested in the request header or if no diagnostic information was
encountered in processing of the request.

5.8.2.3 Service results

Table 23 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 23 — AddNodes Service Result Codes

Symbolic Id

Description

Bad_NothingToDo

See Table 182 for the description of this result code.

Bad_TooManyOperations

See Table 182 for the description of this result code.

5.8.2.4 StatusCodes

Table 24 defines values for the operation level statusCode parameter that are specific to this
Service. Common StatusCodes are defined in Table 183.

1.05.04

34 OPC 10000-4: Services

Table 24 — AddNodes Operation Level Result Codes

Symbolic Id

Description

Bad_ParentNodeldlnvalid

The parent node id does not to refer to a valid node.

Bad_ReferenceTypeldinvalid

See Table 183 for the description of this result code.

Bad_ReferenceNotAllowed

The reference could not be created because it violates constraints imposed by the data
model.

Bad_NodeldRejected

The requested node id was rejected either because it was invalid or because the
Server does not allow node ids to be specified by the Client.

Bad_NodeldExists

The requested node id is already used by another node.

Bad_NodeClasslInvalid

See Table 183 for the description of this result code.

Bad_BrowseNamelnvalid

See Table 183 for the description of this result code.

Bad_BrowseNameDuplicated

The browse name is not unique among nodes that share the same relationship with the
parent.

Bad_NodeAttributesinvalid

The node Attributes are not valid for the node class.

Bad_TypeDefinitionInvalid

See Table 183 for the description of this result code.

Bad_UserAccessDenied

See Table 182 for the description of this result code.

5.8.3 AddReferences
5.8.3.1 Description

This Service is used to add one or more References to one or more Nodes. The NodeClass is an

input parameter that is used to validate that the Reference to be added matches the NodeClass of
the TargetNode. This parameter is not validated if the Reference refers to a TargetNode in a remote

Server.

In certain cases, adding new References to the AddressSpace shall require that the Server add new
Server ids to the Server’s ServerArray Variable. For this reason, remote Servers are identified by
their URI and not by their ServerArray index. This allows the Server to add the remote Server URIs

to its ServerArray.

5.8.3.2 Parameters

Table 25 defines the parameters for the Service.

OPC 10000-4: Services

35 1.05.04

Table 25 — AddReferences Service Parameters

Name Type Description
Request
requestHeader Request Common request parameters (see 7.33 for RequestHeader definition).
Header
referencesToAdd [] AddReferences | List of Reference instances to add to the SourceNode. The targetNodeClass of
Item each Reference in the list shall match the NodeClass of the TargetNode. This
structure is defined in-line with the following indented items.
sourceNodeld Nodeld Nodeld of the Node to which the Reference is to be added. The source Node
shall always exist in the Server to add the Reference. The isForward parameter
can be set to FALSE if the target Node is on the local Server and the source
Node on the remote Server.
referenceTypeld Nodeld Nodeld of the ReferenceType that defines the Reference.
isForward Boolean If the value is TRUE, the Server creates a forward Reference. If the value is
FALSE, the Server creates an inverse Reference.
targetServerUri String URI of the remote Server. If this parameter is not null or empty, it overrides the
serverindex in the targetNodeld.
targetNodeld Expanded Expanded Nodeld of the TargetNode. The ExpandedNodeld type is defined in
Nodeld 7.16.
targetNodeClass NodeClass NodeClass of the TargetNode. The Client shall specify this since the TargetNode
might not be accessible directly by the Server.
Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header
results [] StatusCode List of StatusCodes for the References to add (see 7.39 for StatusCode

definition). The size and order of the list matches the size and order of the
referencesToAdd request parameter.

diagnosticInfos []

Diagnostic Info

List of diagnostic information for the References to add (see 7.12 for
DiagnosticInfo definition). The size and order of the list matches the size and
order of the referencesToAdd request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic
information was encountered in processing of the request.

5.8.3.3 Service results

Table 26 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 26 — AddReferences Service Result Codes

Symbolic Id

Description

Bad_NothingToDo

See Table 182 for the description of this result code.

Bad_TooManyOperations

See Table 182 for the description of this result code.

5.8.3.4 StatusCodes

Table 27 defines values for the results parameter that are specific to this Service.

Common

StatusCodes are defined in Table 183.

Table 27 — AddReferences Operation Level Result Codes

Symbolic Id

Description

Bad_SourceNodeldInvalid

See Table 183 for the description of this result code.

Bad_ReferenceTypeldinvalid

See Table 183 for the description of this result code.

Bad_ServerUrilnvalid

See Table 182 for the description of this result code.

Bad_TargetNodeldInvalid

See Table 183 for the description of this result code.

Bad_NodeClasslInvalid

See Table 183 for the description of this result code.

Bad_ReferenceNotAllowed

The reference could not be created because it violates constraints imposed by the data
model on this Server.

Bad_ReferenceLocalOnly

The reference type is not valid for a reference to a remote Server.

Bad_UserAccessDenied

See Table 182 for the description of this result code.

Bad_DuplicateReferenceNotAllowed

The reference type between the nodes is already defined.

Bad_InvalidSelfReference

The Server does not allow this type of self reference on this node.

1.05.04 36 OPC 10000-4: Services

5.8.4 DeleteNodes
5.8.4.1 Description
This Service is used to delete one or more Nodes from the AddressSpace.

When any of the Nodes deleted by an invocation of this Service is the TargetNode of a Reference,
then those References are left unresolved based on the deleteTargetReferences parameter.

Servers may delete additional Nodes and References like child Nodes that exist based on a
TypeDefinition. The behaviour is Server specific.

When any of the Nodes deleted by an invocation of this Service is being monitored, then a
Notification containing the status code Bad_NodeldUnknown is sent to the monitoring Client
indicating that the Node has been deleted.

5.8.4.2 Parameters
Table 28 defines the parameters for the Service.

Table 28 — DeleteNodes Service Parameters

Name Type Description
Request
requestHeader Request Common request parameters (see 7.33 for RequestHeader definition).
Header
nodesToDelete [] DeleteNodes | List of Nodes to delete. This structure is defined in-line with the following
Item indented items.
nodeld Nodeld Nodeld of the Node to delete.
deleteTargetReferences | Boolean A Boolean parameter with the following values:
TRUE delete References in TargetNodes that Reference the Node to
delete.
FALSE delete only the References for which the Node to delete is the
source.

The Server cannot guarantee that it is able to delete all References from
TargetNodes if this parameter is TRUE.

Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header
results [] StatusCode List of StatusCodes for the Nodes to delete (see 7.39 for StatusCode definition).
The size and order of the list matches the size and order of the list of the
nodesToDelete request parameter.
diagnosticInfos [] Diagnostic List of diagnostic information for the Nodes to delete (see 7.12 for Diagnosticlnfo
Info definition). The size and order of the list matches the size and order of the

nodesToDelete request parameter. This list is empty if diagnostics information
was not requested in the request header or if no diagnostic information was
encountered in processing of the request.

5.8.4.3 Service results

Table 29 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 29 — DeleteNodes Service Result Codes

Symbolic Id Description
Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.

5.8.4.4 StatusCodes

Table 30 defines values for the results parameter that are specific to this Service. Common
StatusCodes are defined in Table 183.

OPC 10000-4: Services 37 1.05.04

Table 30 — DeleteNodes Operation Level Result Codes

Symbolic Id Description

Bad_NodeldInvalid See Table 183 for the description of this result code.
Bad_NodeldUnknown See Table 183 for the description of this result code.
Bad_UserAccessDenied See Table 182 for the description of this result code.
Bad_NoDeleteRights See Table 183 for the description of this result code.
Uncertain_ReferenceNotDeleted | The Server was not able to delete all target references.

5.8.5 DeleteReferences
5.8.5.1 Description

This Service is used to delete one or more References of a Node.

When any of the References deleted by an invocation of this Service are contained in a View, then
the ViewVersion Property is updated if this Property is supported.

Table 31 defines the parameters for the Service.

Table 31 — DeleteReferences Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
referencesToDelete [] | DeleteReferences | List of References to delete. This structure is defined in-line with the following
Item indented items.
sourceNodeld Nodeld Nodeld of the Node that contains the Reference to delete.
referenceTypeld Nodeld Nodeld of the ReferenceType that defines the Reference to delete.
isForward Boolean If the value is TRUE, the Server deletes a forward Reference. If the value is
FALSE, the Server deletes an inverse Reference.
targetNodeld ExpandedNodeld Nodeld of the TargetNode of the Reference.

If the Server index indicates that the TargetNode is a remote Node, then the
nodeld shall contain the absolute namespace URI. If the TargetNode is a local
Node the nodeld shall contain the namespace index.

deleteBidirectional Boolean

A Boolean parameter with the following values:

TRUE delete the specified Reference and the opposite Reference from
the TargetNode. If the TargetNode is located in a remote Server,
the Server is permitted to delete the specified Reference only.

FALSE delete only the specified Reference.

Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).
results [] StatusCode List of StatusCodes for the References to delete (see 7.39 for StatusCode
definition). The size and order of the list matches the size and order of the
referencesToDelete request parameter.
diagnosticInfos [] DiagnosticInfo List of diagnostic information for the References to delete (see 7.12 for

DiagnosticInfo definition). The size and order of the list matches the size and
order of the referencesToDelete request parameter. This list is empty if
diagnostics information was not requested in the request header or if no
diagnostic information was encountered in processing of the request.

5.8.5.2 Service results

Table 32 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.
Table 32 — DeleteReferences Service Result Codes
Symbolic Id Description
Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.

5.8.5.3 StatusCodes

Table 33 defines values for the results parameter that are specific to this Service. Common

StatusCodes are defined in Table 183.

1.05.04 38 OPC 10000-4: Services

Table 33 — DeleteReferences Operation Level Result Codes

Symbolic Id Description

Bad_SourceNodeldInvalid See Table 183 for the description of this result code.
Bad_ReferenceTypeldinvalid | See Table 183 for the description of this result code.
Bad_Serverindexinvalid The Server index is not valid.
Bad_TargetNodeldInvalid See Table 183 for the description of this result code.
Bad_UserAccessDenied See Table 182 for the description of this result code.
Bad_NoDeleteRights See Table 183 for the description of this result code.

5.9 View Service Set

5.9.1 Overview

Clients use the browse Services of the View Service Set to navigate through the AddressSpace or
through a View which is a subset of the AddressSpace.

A View is a subset of the AddressSpace created by the Server. Future versions of this document
may also define services to create Client-defined Views. See OPC 10000-5 for a description of the
organization of views in the AddressSpace.

5.9.2 Browse

5.9.2.1 Description

This Service is used to discover the References of a specified Node. The browse can be further
limited by the use of a View. This Browse Service also supports a primitive filtering capability.

In some cases it may take longer than the Client timeout hint to process all nodes to browse. In this
case the Server may return zero results with a continuation point for the affected nodes before the
timeout expires.

5.9.2.2 Parameters

Table 34 defines the parameters for the Service.

OPC 10000-4: Services

39 1.05.04

Table 34 — Browse Service Parameters

Name Type Description
Request

requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).

View ViewDescription Description of the View to browse (see 7.45 for ViewDescription definition). An
empty ViewDescription value indicates the entire AddressSpace. Use of the
empty ViewDescription value causes all References of the nodesToBrowse to be
returned. Use of any other View causes only the References of the
nodesToBrowse that are defined for that View to be returned.

requestedMax Counter Indicates the maximum number of references to return for each starting Node

ReferencesPerNode specified in the request. The value 0 indicates that the Client is imposing no

limitation (see 7.8 for Counter definition).

nodesToBrowse []

BrowseDescription

A list of nodes to Browse. This structure is defined in-line with the following
indented items.

nodeld Nodeld Nodeld of the Node to be browsed. If a view is provided, it shall include this
Node.
browseDirection Enum An enumeration that specifies the direction of References to follow. The

BrowseDirection

enumeration is defined in 7.5.

The returned References do indicate the direction the Server followed in the
isForward parameter of the ReferenceDescription.

Symmetric References are always considered to be in forward direction
therefore the isForward flag is always set to TRUE and symmetric References
are not returned if browseDirection is set to INVERSE.

referenceTypeld Nodeld Specifies the Nodeld of the ReferenceType to follow. Only instances of this
ReferenceType or its subtypes are returned.
If not specified then all References are returned and includeSubtypes is ignored.
includeSubtypes Boolean Indicates whether subtypes of the ReferenceType should be included in the
browse. If TRUE, then instances of referenceTypeld and all of its subtypes are
returned.
nodeClassMask Uint32 Specifies the NodeClasses of the TargetNodes. Only TargetNodes with the
selected NodeClasses are returned. The NodeClasses are assigned the
following bits:
Bit NodeClass
0 Object
1 Variable
2 Method
3 ObjectType
4 VariableType
5 ReferenceType
6 DataType
7 View
If set to zero, then all NodeClasses are returned.
If the NodeClass is unknown for a remote Node, the nodeClassMask is ignored.
resultMask Uint32 Specifies the fields in the ReferenceDescription structure that should be
returned. The fields are assigned the following bits:
Bit Result
0 ReferenceType
1 IsForward
2 NodeClass
3 BrowseName
4 DisplayName
5 TypeDefinition
The ReferenceDescription type is defined in 7.30.
Response
responseHeader Response Header Common response parameters (see 7.34 for ResponseHeader definition).
results [] BrowseResult A list of BrowseResults. The size and order of the list matches the size and order

of the nodesToBrowse specified in the request.
The BrowseResult type is defined in 7.6.

diagnosticInfos []

Diagnostic Info

List of diagnostic information for the results (see 7.12 for Diagnosticlnfo
definition). The size and order of the list matches the size and order of the
results response parameter. This list is empty if diagnostics information was not
requested in the request header or if no diagnostic information was encountered
in processing of the request.

1.05.04 40 OPC 10000-4: Services

5.9.2.3 Service results

Table 35 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 35 — Browse Service Result Codes

Symbolic Id Description

Bad_ViewldUnknown See Table 182 for the description of this result code.
Bad_ViewTimestamplnvalid See Table 182 for the description of this result code.
Bad_ViewParameterMismatchinvalid See Table 182 for the description of this result code.
Bad_ViewVersionlnvalid See Table 182 for the description of this result code.
Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.

5.9.2.4 StatusCodes

Table 36 defines values for the results parameter that are specific to this Service. Common
StatusCodes are defined in Table 183.

Table 36 — Browse Operation Level Result Codes

Symbolic Id Description

Bad_NodeldInvalid See Table 183 for the description of this result code.

Bad_NodeldUnknown See Table 183 for the description of this result code.
Bad_ReferenceTypeldinvalid See Table 183 for the description of this result code.
Bad_BrowseDirectionlnvalid See Table 183 for the description of this result code.

Bad_NodeNotInView See Table 183 for the description of this result code.
Bad_NoContinuationPoints See Table 183 for the description of this result code.
Uncertain_NotAlINodesAvailable Browse results may be incomplete because of the unavailability of a subsystem.

5.9.3 BrowseNext
5.9.3.1 Description

This Service is used to request the next set of Browse or BrowseNext response information that is
too large to be sent in a single response. “Too large” in this context means that the Server is not
able to return a larger response or that the number of results to return exceeds the maximum number
of results to return that was specified by the Client in the original Browse request. The BrowseNext
shall be submitted on the same Session that was used to submit the Browse or BrowseNext that is
being continued.

5.9.3.2 Parameters
Table 37 defines the parameters for the Service.

OPC 10000-4: Services 41 1.05.04

Table 37 — BrowseNext Service Parameters

Name Type Description
Request
requestHeader Request Header | Common request parameters (see 7.33 for RequestHeader definition).
releaseContinuationPoints Boolean A Boolean parameter with the following values:
TRUE passed continuationPoints shall be reset to free resources in

the Server. The continuation points are released and the results
and diagnosticInfos arrays are empty.
FALSE passed continuationPoints shall be used to get the next set of
browse information.
A Client shall always use the continuation point returned by a Browse or
BrowseNext response to free the resources for the continuation point in the
Server. If the Client does not want to get the next set of browse information,
BrowseNext shall be called with this parameter set to TRUE.

continuationPoints] Continuation A list of Server-defined opaqgue values that represent continuation points. The
Point value for a continuation point was returned to the Client in a previous Browse
or BrowseNext response. These values are used to identify the previously
processed Browse or BrowseNext request that is being continued and the
point in the result set from which the browse response is to continue.

Clients may mix continuation points from different Browse or BrowseNext
responses.

The ContinuationPoint type is described in 7.9.

Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header
results [] BrowseResult A list of references that met the criteria specified in the original Browse

request.

The size and order of this list matches the size and order of the
continuationPoints request parameter.

The BrowseResult type is defined in 7.6.

diagnosticinfos [] Diagnostic Info List of diagnostic information for the results (see 7.12 for Diagnosticlnfo
definition). The size and order of the list matches the size and order of the
results response parameter. This list is empty if diagnostics information was
not requested in the request header or if no diagnostic information was
encountered in processing of the request.

5.9.3.3 Service results

Table 38 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 38 — BrowseNext Service Result Codes

Symbolic Id Description
Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.

5.9.3.4 StatusCodes

Table 39 defines values for the results parameter that are specific to this Service. Common
StatusCodes are defined in Table 183.

1.05.04 42 OPC 10000-4: Services

Table 39 — BrowseNext Operation Level Result Codes

Symbolic Id Description
Bad_NodeldInvalid See Table 183 for the description of this result code.
Bad_NodeldUnknown See Table 183 for the description of this result code.

Bad_ReferenceTypeldinvalid | See Table 183 for the description of this result code.
Bad_BrowseDirectionlnvalid See Table 183 for the description of this result code.
Bad_NodeNotInView See Table 183 for the description of this result code.
Bad_ContinuationPointinvalid | See Table 183 for the description of this result code.

5.9.4 TranslateBrowsePathsToNodelds
5.9.4.1 Description

This Service is used to request that the Server translates one or more browse paths to Nodelds.
Each browse path is constructed of a starting Node and a RelativePath. The specified starting Node
identifies the Node from which the RelativePath is based. The RelativePath contains a sequence of
ReferenceTypes and BrowseNames.

One purpose of this Service is to allow programming against type definitions. Since BrowseNames
shall be unique in the context of type definitions, a Client may create a browse path that is valid for
a type definition and use this path on instances of the type. For example, an ObjectType “Boiler”
may have a “HeatSensor” Variable as InstanceDeclaration. A graphical element programmed
against the “Boiler” may need to display the Value of the “HeatSensor”. If the graphical element
would be called on “Boiler1”, an instance of “Boiler”, it would need to call this Service specifying the
Nodeld of “Boiler1” as starting Node and the BrowseName of the “HeatSensor” as browse path. The
Service would return the Nodeld of the “HeatSensor” of “Boiler1” and the graphical element could
subscribe to its Value Attribute.

If a Node has multiple targets with the same BrowseName, the Server shall return a list of Nodelds.
However, since one of the main purposes of this Service is to support programming against type
definitions, the Nodeld of the Node based on the type definition of the starting Node is returned as
the first Nodeld in the list.

5.9.4.2 Parameters
Table 40 defines the parameters for the Service.

OPC 10000-4: Services

43 1.05.04

Table 40 — TranslateBrowsePathsToNodelds Service Parameters

Name

Type

Description

Request

requestHeader

RequestHeader

Common request parameters (see 7.33 for RequestHeader definition).

browsePaths []

BrowsePath

List of browse paths for which Nodelds are being requested. This structure is
defined in-line with the following indented items.

startingNode

Nodeld

Nodeld of the starting Node for the browse path.

relativePath

RelativePath

The path to follow from the startingNode.

The last element in the relativePath shall always have a targetName specified.
This further restricts the definition of the RelativePath type. The Server shall
return Bad_BrowseNamelnvalid if the targetName is missing.

The RelativePath structure is defined in 7.31.

Response

responseHeader

ResponseHeader

Common response parameters (see 7.34 for ResponseHeader definition).

results []

BrowsePathResult

List of results for the list of browse paths. The size and order of the list matches
the size and order of the browsePaths request parameter. This structure is
defined in-line with the following indented items.

statusCode

StatusCode

StatusCode for the browse path (see 7.39 for StatusCode definition).

targets []

BrowsePathTarget

List of targets for the relativePath from the startingNode. This structure is
defined in-line with the following indented items.

A Server may encounter a Reference to a Node in another Server which it
cannot follow while it is processing the RelativePath. If this happens the Server
returns the Nodeld of the external Node and sets the remainingPathindex
parameter to indicate which RelativePath elements still need to be processed.
To complete the operation the Client shall connect to the other Server and call
this service again using the target as the startingNode and the unprocessed
elements as the relativePath.

targetld

ExpandedNodeld

The identifier for a target of the RelativePath.

remainingPathindex

Index

The index of the first unprocessed element in the RelativePath.
This value shall be equal to the maximum value of Index data type if all
elements were processed (see 7.18 for Index definition).

diagnosticinfos []

Diagnosticinfo

List of diagnostic information for the list of browse paths (see 7.12 for
Diagnosticlnfo definition). The size and order of the list matches the size and
order of the browsePaths request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic
information was encountered in processing of the request.

5.9.4.3 Service results

Table 41 defines the Service results specific to this Service. Common StatusCodes are defined in

7.39.

Table 41 — TranslateBrowsePathsToNodelds Service Result Codes

Symbolic Id

Description

Bad_NothingToDo

See Table 182 for the description of this result code.

Bad_TooManyOperations

See Table 182 for the description of this result code.

5.9.4.4 StatusCodes

Table 42 defines values for the operation level statusCode parameters that are specific to this
Service. Common StatusCodes are defined in Table 183.

1.05.04

44 OPC 10000-4: Services

Table 42 — TranslateBrowsePathsToNodelds Operation Level Result Codes

Symbolic Id

Description

Bad_NodeldInvalid

See Table 183 for the description of this result code.

Bad_NodeldUnknown

See Table 183 for the description of this result code.

Bad_NothingToDo

See Table 182 for the description of this result code.
This code indicates that the relativePath contained an empty list.

Bad_BrowseNamelnvalid

See Table 183 for the description of this result code.
This code indicates that a TargetName was missing in a RelativePath.

Uncertain_ReferenceOutOfServer

The path element has targets which are in another Server.

Bad_TooManyMatches

The requested operation has too many matches to return.
Users should use queries for large result sets. Servers should allow at least 10 matches
before returning this error code.

Bad_QueryTooComplex

The requested operation requires too many resources in the Server.

Bad_NoMatch

The requested relativePath cannot be resolved to a target to return.

5.9.5 RegisterNodes
5.9.5.1 Description

A Server often has no direct access to the information that it manages. Variables or services might
be in underlying systems where additional effort is required to establish a connection to these
systems. The RegisterNodes Service can be used by Clients to register the Nodes that they know
they will access repeatedly (e.g. Write, Call). It allows Servers to set up anything needed so that
the access operations will be more efficient. Clients can expect performance improvements when
using registered Nodelds, but the optimization measures are vendor-specific. For Variable Nodes
Servers shall concentrate their optimization efforts on the Value Attribute.

Registered Nodelds are only guaranteed to be valid within the current Session. Clients shall
unregister unneeded Ids immediately to free up resources.

RegisterNodes does not validate the Nodelds from the request. Servers will simply copy unknown
Nodelds in the response. Structural Nodeld errors (size violations, invalid id types) will cause the
complete Service to fail.

For the purpose of Auditing, Servers shall not use the registered Nodelds but only the canonical
Nodelds which is the value of the Nodeld Attribute.

5.9.5.2 Parameters
Table 43 defines the parameters for the Service.

Table 43 — RegisterNodes Service Parameters

Name Type Description
Request
requestHeader Request Header Common request parameters (see 7.33 for RequestHeader definition).

nodesToRegister [] Nodeld List of Nodelds to register that the Client has retrieved through browsing, querying

or in some other manner.

Response
responseHeader
registeredNodelds []

Response Header
Nodeld

Common response parameters (see 7.34 for ResponseHeader definition).

A list of Nodelds which the Client shall use for subsequent access operations. The
size and order of this list matches the size and order of the nodesToRegister
request parameter.

The Server may return the Nodeld from the request or a new (an alias) Nodeld. It
is recommended that the Server return a numeric Nodelds for aliasing.

In case no optimization is supported for a Node, the Server shall return the
Nodeld from the request.

5.9.5.3 Service results

Table 44 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

OPC 10000-4: Services 45 1.05.04

Table 44 — RegisterNodes Service Result Codes

Symbolic Id Description

Bad_NothingToDo See Table 182 for the description of this result code.

Bad_TooManyOperations See Table 182 for the description of this result code.

Bad_NodeldInvalid See Table 183 for the description of this result code.
Servers shall completely reject the RegisterNodes request if any of the Nodelds in the
nodesToRegister parameter are structurally invalid.

5.9.6 UnregisterNodes

5.9.6.1 Description

This Service is used to unregister Nodelds that have been obtained via the RegisterNodes service.
UnregisterNodes does not validate the Nodelds from the request. Servers shall simply unregister
Nodelds that are known as registered Nodelds. Any Nodelds that are in the list, but are not
registered Nodelds are simply ignored.

5.9.6.2 Parameters

Table 50 defines the parameters for the Service.

Table 45 — UnregisterNodes Service Parameters

Name Type Description
Request
requestHeader Request Header | Common request parameters (see 7.33 for RequestHeader definition).
nodesToUnregister [] Nodeld A list of Nodelds that have been obtained via the RegisterNodes service.
Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header

5.9.6.3 Service results

Table 51 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 46 — UnregisterNodes Service Result Codes

Symbolic Id Description
Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.

5.10 Query Service Set
5.10.1 Overview

This Service Set is used to issue a Query to a Server. OPC UA Query is generic in that it provides
an underlying storage mechanism independent Query capability that can be used to access a wide
variety of OPC UA data stores and information management systems. OPC UA Query permits a
Client to access data maintained by a Server without any knowledge of the logical schema used for
internal storage of the data. Knowledge of the AddressSpace is sufficient.

An OPC UA Application is expected to use the OPC UA Query Services as part of an initialization
process or an occasional information synchronization step. For example, OPC UA Query would be
used for bulk data access of a persistent store to initialise an analysis application with the current
state of a system configuration. A Query may also be used to initialise or populate data for a report.

A Query defines what instances of one or more TypeDefinitionNodes in the AddressSpace should
supply a set of Attributes. Results returned by a Server are in the form of an array of QueryDataSets.
The selected Attribute values in each QueryDataSet come from the definition of the selected
TypeDefinitionNodes or related TypeDefinitionNodes and appear in results in the same order as the
Attributes that were passed into the Query. Query also supports Node filtering on the basis of
Attribute values, as well as relationships between TypeDefinitionNodes.

1.05.04 46 OPC 10000-4: Services

See Annex B for example queries.

5.10.2 Querying Views

A View is a subset of the AddressSpace available in the Server. See OPC 10000-5 for a description
of the organization of Views in the AddressSpace.

For any existing View, a Query may be used to return a subset of data from the View. When an
application issues a Query against a View, only data defined by the View is returned. Data not
included in the View but included in the original AddressSpace is not returned.

The Query Services supports access to current and historical data. The Service supports a Client
guerying a past version of the AddressSpace. Clients may specify a ViewVersion or a Timestamp in
a Query to access past versions of the AddressSpace. OPC UA Query is complementary to Historical
Access in that the former is used to Query an AddressSpace that existed at a time and the latter is
used to Query for the value of Attributes over time. In this way, a Query can be used to retrieve a
portion of a past AddressSpace so that Attribute value history may be accessed using Historical
Access even if the Node is no longer in the current AddressSpace.

Servers that support Query are expected to be able to access the AddressSpace that is associated
with the local Server and any Views that are available on the local Server. If a View or the
AddressSpace also references a remote Server, query may be able to access the AddressSpace of
the remote Server, but it is not required. If a Server does access a remote Server the access shall
be accomplished using the user identity of the Client as described in 5.6.1.

5.10.3 QueryFirst
5.10.3.1 Description

This Service is used to issue a Query request to the Server. The complexity of the Query can range
from very simple to highly sophisticated. The Query can simply request data from instances of a
TypeDefinitionNode or TypeDefinitionNode subject to restrictions specified by the filter. On the other
hand, the Query can request data from instances of related Node types by specifying a RelativePath
from an originating TypeDefinitionNode. In the filter, a separate set of paths can be constructed for
limiting the instances that supply data. A filtering path can include multiple RelatedTo operators to
define a multi-hop path between source instances and target instances. For example, one could
filter on students that attend a particular school, but return information about students and their
families. In this case, the student school relationship is traversed for filtering, but the student family
relationship is traversed to select data. For a complete description of ContentFilter see 7.7, also see
Clause B.1 for simple examples and Clause B.2 for more complex examples of content filter and
queries.

The Client provides an array of NodeTypeDescription which specify the Nodeld of a
TypeDefinitionNode and selects what Attributes are to be returned in the response. A Client can
also provide a set of RelativePaths through the type system starting from an originating
TypeDefinitionNode. Using these paths, the Client selects a set of Attributes from Nodes that are
related to instances of the originating TypeDefinitionNode. Additionally, the Client can request the
Server return instances of subtypes of TypeDefinitionNodes. If a selected Attribute does not exist in
a TypeDefinitionNode but does exist in a subtype, it is assumed to have a null value in the
TypeDefinitionNode in question. Therefore, this does not constitute an error condition and a null
value is returned for the Attribute.

The Client can use the filter parameter to limit the result set by restricting Attributes and Properties
to certain values. Another way the Client can use a filter to limit the result set is by specifying how
instances should be related, using RelatedTo operators. In this case, if an instance at the top of the
RelatedTo path cannot be followed to the bottom of the path via specified hops, no QueryDataSets
are returned for the starting instance or any of the intermediate instances.

When querying for related instances in the RelativePath, the Client can optionally ask for
References. A Reference is requested via a RelativePath that only includes a ReferenceType. If all
References are desired than the root ReferenceType is listed. These References are returned as
part of the QueryDataSets.

OPC 10000-4: Services 47 1.05.04

Query Services allow a special handling of the targetName field in the RelativePath. In several
Query use cases a type Nodeld is necessary in the path instead of a QualifiedName. Therefore the
Client is allowed to specify a Nodeld in the QualifiedName. This is done by setting the
namespacelndex of the targetName to zero and the name part of the targetName to the XML
representation of the Nodeld. The XML representation is defined in OPC 10000-6. When matching
instances are returned as the target node, the target node shall be an instance of the specified type
or subtype of the specified type.

Table 47 defines the request parameters and Table 48 the response parameters for the QueryFirst
Service.

1.05.04

48 OPC 10000-4: Services

Table 47 — QueryFirst Request Parameters

Name Type Description

Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
View ViewDescription Specifies a View and temporal context to a Server (see 7.45 for

ViewDescription definition).

nodeTypes []

NodeTypeDescription

This is the Node type description. This structure is defined in-line with
the following indented items.

typeDefinitionNode

ExpandedNodeld

Nodeld of the originating TypeDefinitionNode of the instances for
which data is to be returned.

includeSubTypes

Boolean

A flag that indicates whether the Server should include instances of
subtypes of the TypeDefinitionNode in the list of instances of the Node
type.

dataToReturn []

QueryDataDescription

Specifies an Attribute or Reference from the originating
typeDefinitionNode along a given relativePath for which to return data.
This structure is defined in-line with the following indented items.

relativePath

RelativePath

Browse path relative to the originating Node that identifies the Node
which contains the data that is being requested, where the originating
Node is an instance Node of the type defined by the type definition
Node. The instance Nodes are further limited by the filter provided as
part of this call. For a definition of relativePath see 7.31.

This relative path could end on a Reference, in which case the
ReferenceDescription of the Reference would be returned as its value.
The targetName field of the relativePath may contain a type Nodeld.
This is done by setting the namespacelndex of the targetName to zero
and the name part of the targetName to the XML representation of the
Nodeld. The XML representation is defined in OPC 10000-6.

When matching instances are returned as the target node, the target
node shall be an instance of the specified type or subtype of the
specified type.

attributeld

Integerld

Id of the Attribute. This shall be a valid Attribute Id. The Integerld is
defined in 7.19. The Integerld for Attributes are defined in OPC 10000-
6. If the RelativePath ended in a Reference then this parameter is 0
and ignored by the Server.

indexRange

NumericRange

This parameter is used to identify a single element of a structure or an
array, or a single range of indexes for arrays. If a range of elements
are specified, the values are returned as a composite. The first
element is identified by index 0 (zero). The NumericRange type is
defined in 7.27.

This parameter is null or empty if the specified Attribute is not an array
or a structure. However, if the specified Attribute is an array or a
structure, and this parameter is null or empty, then all elements are to
be included in the range.

Filter

ContentFilter

Resulting Nodes shall be limited to the Nodes matching the criteria
defined by the filter. ContentFilter is discussed in 7.7. If an empty filter
is provided then the entire AddressSpace shall be examined and all
Nodes that contain a matching requested Attribute or Reference are
returned.

maxDataSetsToReturn

Counter

The number of QueryDataSets that the Client wants the Server to
return in the response and on each subsequent continuation call
response. The Server is allowed to further limit the response, but shall
not exceed this limit.

A value of 0 indicates that the Client is imposing no limitation.

maxReferencesToReturn

Counter

The number of References that the Client wants the Server to return in
the response for each QueryDataSet and on each subsequent
continuation call response. The Server is allowed to further limit the
response, but shall not exceed this limit.

A value of 0 indicates that the Client is imposing no limitation.

For example a result where 4 Nodes are being returned, but each has
100 References, if this limit were set to 50 then only the first 50
References for each Node would be returned on the initial call and a
continuation point would be set indicating additional data.

OPC 10000-4: Services

49 1.05.04

Table 48 — QueryFirst Response Parameters

Name Type Description

Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).
queryDataSets [] QueryDataSet The array of QueryDataSets. This array is empty if no Nodes or References

met the nodeTypes criteria. In this case the continuationPoint parameter shall
be empty.
The QueryDataSet type is defined in 7.28.

continuationPoint

ContinuationPoint

Server-defined opaque value that identifies the continuation point.

The continuation point is used only when the Query results are too large to be
returned in a single response. “Too large” in this context means that the
Server is not able to return a larger response or that the number of
QueryDataSets to return exceeds the maximum number of QueryDataSets to
return that was specified by the Client in the request.

The continuation point is used in the QueryNext Service. When not used, the
value of this parameter is null or empty. If a continuation point is returned, the
Client shall call QueryNext to get the next set of QueryDataSets or to free the
resources for the continuation point in the Server.

A continuation point shall remain active until the Client passes the
continuation point to QueryNext or the session is closed. If the maximum
continuation points have been reached the oldest continuation point shall be
reset.

The ContinuationPoint type is described in 7.9.

parsingResults[]

ParsingResult

List of parsing results for QueryFirst. The size and order of the list matches
the size and order of the NodeTypes request parameter. This structure is
defined in-line with the following indented items.

This list is populated with any status codes that are related to the processing
of the node types that are part of the query. The array can be empty if no
errors where encountered. If any node type encountered an error all node
types shall have an associated status code.

statusCode

StatusCode

Parsing result for the requested NodeTypeDescription.

dataStatusCodes []

StatusCode

List of results for dataToReturn. The size and order of the list matches the
size and order of the dataToReturn request parameter. The array can be
empty if no errors where encountered.

dataDiagnosticInfos []

Diagnosticlnfo

List of diagnostic information dataToReturn (see 7.12 for Diagnosticinfo
definition). The size and order of the list matches the size and order of the
dataToReturn request parameter. This list is empty if diagnostics information
was not requested in the request header or if no diagnostic information was
encountered in processing of the query request.

diagnosticinfos []

Diagnosticlnfo

List of diagnostic information for the requested NodeTypeDescription. This list
is empty if diagnostics information was not requested in the request header or
if no diagnostic information was encountered in processing of the query
request.

filterResult

ContentFilter
Result

A structure that contains any errors associated with the filter.
This structure shall be empty if no errors occurred.
The ContentFilterResult type is defined in 7.7.2.

5.10.3.2 Service results

If the Query is invalid or cannot be processed, then QueryDataSets are not returned and only a
Service result, filterResult, parsingResults and optional Diagnosticlnfo is returned. Table 49 defines
the Service results specific to this Service. Common StatusCodes are defined in Table 182.

1.05.04 50 OPC 10000-4: Services

Table 49 — QueryFirst Service Result Codes

Symbolic Id Description

Bad_NothingToDo See Table 182 for the description of this result code.

Bad_TooManyOperations See Table 182 for the description of this result code.

Bad_ContentFilterInvalid See Table 183 for the description of this result code.

Bad_ViewldUnknown See Table 182 for the description of this result code.

Bad_ViewTimestamplnvalid See Table 182 for the description of this result code.

Bad_ViewParameterMismatchlnvalid See Table 182 for the description of this result code.

Bad_ViewVersionInvalid See Table 182 for the description of this result code.

Bad_InvalidFilter The provided filter is invalid, see the filterResult for specific errors

Bad_NodelistError The NodeTypes provided contain an error, see the parsingResults for specific errors

Bad_InvalidView The provided ViewDescription is not a valid ViewDescription.

Good_ResultsMayBelncomplete The Server should have followed a reference to a node in a remote Server but did not. The
result set may be incomplete.

5.10.3.3 StatusCodes

Table 50 defines values for the parsingResults statusCode parameter that are specific to this
Service. Common StatusCodes are defined in Table 183.

Table 50 — QueryFirst Operation Level Result Codes

Symbolic Id Description

Bad_NodeldInvalid See Table 183 for the description of this result code.
Bad_NodeldUnknown See Table 183 for the description of this result code.
Bad_NotTypeDefinition The provided Nodeld was not a type definition Nodeld.
Bad_Attributeldinvalid See Table 183 for the description of this result code.
Bad_IndexRangelnvalid See Table 183 for the description of this result code.

5.10.4 QueryNext
5.10.4.1 Descriptions

This Service is used to request the next set of QueryFirst or QueryNext response information that
is too large to be sent in a single response. “Too large” in this context means that the Server is not
able to return a larger response or that the number of QueryDataSets to return exceeds the
maximum number of QueryDataSets to return that was specified by the Client in the original request.
The QueryNext shall be submitted on the same session that was used to submit the QueryFirst or
QueryNext that is being continued.

5.10.4.2 Parameters
Table 51 defines the parameters for the Service.

OPC 10000-4: Services 51 1.05.04

Table 51 — QueryNext Service Parameters

Name Type Description
Request
requestHeader Request Header Common request parameters (see 7.33 for RequestHeader definition).
releaseContinuationPoint Boolean A Boolean parameter with the following values:
TRUE passed continuationPoint shall be reset to free
resources for the continuation point in the Server.
FALSE passed continuationPoint shall be used to get the next

set of QueryDataSets.
A Client shall always use the continuation point returned by a
QueryFirst or QueryNext response to free the resources for the
continuation point in the Server. If the Client does not want to get the
next set of Query information, QueryNext shall be called with this
parameter set to TRUE.
If the parameter is set to TRUE all array parameters in the response
shall contain empty arrays.
continuationPoint ContinuationPoint Server defined opaque value that represents the continuation point. The
value of the continuation point was returned to the Client in a previous
QueryFirst or QueryNext response. This value is used to identify the
previously processed QueryFirst or QueryNext request that is being
continued, and the point in the result set from which the browse
response is to continue.
The ContinuationPoint type is described in 7.9.

Response
responseHeader Response Header Common response parameters (see 7.34 for ResponseHeader
definition).
queryDataSets [] QueryDataSet The array of QueryDataSets.
The QueryDataSet type is defined in 7.28.
revisedContinuationPoint ContinuationPoint Server-defined opaque value that represents the continuation point. It is

used only if the information to be returned is too large to be contained in
a single response. When not used or when releaseContinuationPoint is
set, the value of this parameter is null or empty.
The ContinuationPoint type is described in 7.9.

5.10.4.3 Service results

Table 52 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 52 — QueryNext Service Result Codes

Symbolic Id Description
Bad_ContinuationPointinvalid | See Table 183 for the description of this result code.

5.11 Attribute Service Set
5.11.1 Overview
This Service Set provides Services to access Attributes that are part of Nodes.

5.11.2 Read
5.11.2.1 Description

This Service is used to read one or more Attributes of one or more Nodes. For constructed Attribute
values whose elements are indexed, such as an array, this Service allows Clients to read the entire
set of indexed values as a composite, to read individual elements or to read ranges of elements of
the composite.

The maxAge parameter is used to direct the Server to access the value from the underlying data
source, such as a device, if its copy of the data is older than that which the maxAge specifies. If the
Server cannot meet the requested maximum age, it returns its “best effort” value rather than
rejecting the request.

5.11.2.2 Parameters

Table 53 defines the parameters for the Service.

1.05.04

52 OPC 10000-4: Services

Table 53 — Read Service Parameters

Name

Type

Description

Request

requestHeader

RequestHeader

Common request parameters (see 7.33 for RequestHeader definition).

maxAge

Duration

Maximum age of the value to be read in milliseconds. The age of the value is
based on the difference between the ServerTimestamp and the time when the
Server starts processing the request. For example if the Client specifies a
maxAge of 500 milliseconds and it takes 100 milliseconds until the Server starts
processing the request, the age of the returned value could be 600 milliseconds
prior to the time it was requested.

If the Server has one or more values of an Attribute that are within the maximum
age, it can return any one of the values or it can read a new value from the data
source. The number of values of an Attribute that a Server has depends on the
number of Monitoredltems that are defined for the Attribute. In any case, the
Client can make no assumption about which copy of the data will be returned.

If the Server does not have a value that is within the maximum age, it shall
attempt to read a new value from the data source.

If the Server cannot meet the requested maxAge, it returns its “best effort” value
rather than rejecting the request. This may occur when the time it takes the
Server to process and return the new data value after it has been accessed is
greater than the specified maximum age.

If maxAge is set to 0, the Server shall attempt to read a new value from the data
source.

If maxAge is set to the max Int32 value or greater, the Server shall attempt to get
a cached value.

Negative values are invalid for maxAge.

timestampsTo
Return

Enum
TimestampsTo
Return

An enumeration that specifies the Timestamps to be returned for each requested
Variable Value Attribute. The TimestampsToReturn enumeration is defined in
7.40.

nodesToRead [] ReadValueld List of Nodes and their Attributes to read. For each entry in this list, a
StatusCode is returned, and if it indicates success, the Attribute Value is also
returned. The ReadValueld parameter type is defined in 7.29.
Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).
results [] DataValue List of Attribute values (see 7.11 for DataValue definition). The size and order of

this list matches the size and order of the nodesToRead request parameter.
There is one entry in this list for each Node contained in the nodesToRead
parameter.

diagnosticinfos []

Diagnosticinfo

List of diagnostic information (see 7.12 for Diagnosticinfo definition). The size
and order of this list matches the size and order of the nodesToRead request
parameter. There is one entry in this list for each Node contained in the
nodesToRead parameter. This list is empty if diagnostics information was not
requested in the request header or if no diagnostic information was encountered
in processing of the request.

5.11.2.3 Service results

Table 54 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 54 — Read Service Result Codes

Symbolic Id

Description

Bad_NothingToDo

See Table 182 for the description of this result code.

Bad_TooManyOperations

See Table 182 for the description of this result code.

Bad_MaxAgelnvalid

The max age parameter is invalid.

Bad_TimestampsToReturninvalid

See Table 182 for the description of this result code.

5.11.2.4 StatusCodes

Table 55 defines values for the operation level statusCode contained in the DataValue structure of
each results element. Common StatusCodes are defined in Table 183.

OPC 10000-4: Services 53 1.05.04

Table 55 — Read Operation Level Result Codes

Symbolic Id Description

Bad_NodeldInvalid See Table 183 for the description of this result code.
Bad_NodeldUnknown See Table 183 for the description of this result code.
Bad_Attributeldinvalid See Table 183 for the description of this result code.
Bad_IndexRangelnvalid See Table 183 for the description of this result code.
Bad_IndexRangeNoData See Table 183 for the description of this result code.
Bad_DataEncodinglnvalid See Table 183 for the description of this result code.
Bad_DataEncodingUnsupported See Table 183 for the description of this result code.
Bad_NotReadable See Table 183 for the description of this result code.
Bad_UserAccessDenied See Table 182 for the description of this result code.
Bad_SecurityModelnsufficient See Table 183 for the description of this result code.

5.11.3 HistoryRead
5.11.3.1 Description

This Service is used to read historical values or Events of one or more Nodes. For constructed
Attribute values whose elements are indexed, such as an array, this Service allows Clients to read
the entire set of indexed values as a composite, to read individual elements or to read ranges of
elements of the composite. Servers may make historical values available to Clients using this
Service, although the historical values themselves are not visible in the AddressSpace.

The AccesslLevel Attribute defined in OPC 10000-3 indicates a Node’s support for historical values.
Several request parameters indicate how the Server is to access values from the underlying history
data source. The EventNotifier Attribute defined in OPC 10000-3 indicates a Node’s support for
historical Events.

The continuationPoint parameter in the HistoryRead is used to mark a point from which to continue
the read if not all values could be returned in one response. The value is opaque for the Client and
is only used to maintain the state information for the Server to continue from. A Server may use the
timestamp of the last returned data item if the timestamp is unique. This can reduce the need in the
Server to store state information for the continuation point.

In some cases it may take longer than the Client timeout hint to read the data for all nodes to read.
Then the Server may return zero results with a continuation point for the affected nodes before the
timeout expires. That allows the Server to resume the data acquisition on the next Client read call.

For additional details on reading historical data and historical Events see OPC 10000-11.

5.11.3.2 Parameters
Table 56 defines the parameters for the Service.

1.05.04 54 OPC 10000-4: Services

Table 56 — HistoryRead Service Parameters

OPC 10000-4: Services 55 1.05.04
Name Type Description
Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
historyReadDetails Extensible The details define the types of history reads that can be performed. The
Parameter HistoryReadDetails parameter type is an extensible parameter type formally

HistoryReadDetails

defined in OPC 10000-11. The ExtensibleParameter type is defined in 7.17.

timestampsToReturn

Enum
TimestampsTo

An enumeration that specifies the timestamps to be returned for each
requested Variable Value Attribute. The TimestampsToReturn enumeration is

Return defined in 7.40.
Specifying a TimestampsToReturn of NEITHER is not valid. A Server shall
return a Bad_TimestampsToReturninvalid StatusCode in this case.
OPC 10000-11 defines exceptions where this parameter shall be ignored.
releaseContinuation Boolean A Boolean parameter with the following values:

Points TRUE passed continuationPoints shall be reset to free resources in the
Server.
FALSE passed continuationPoints shall be used to get the next set of

historical information.
A Client shall always use the continuation point returned by a HistoryRead
response to free the resources for the continuation point in the Server. If the
Client does not want to get the next set of historical information, HistoryRead
shall be called with this parameter set to TRUE.

nodesToRead []

HistoryReadValueld

This parameter contains the list of items upon which the historical retrieval is to
be performed. This structure is defined in-line with the following indented items.

nodeld Nodeld If the HistoryReadDetails is RAW, PROCESSED, MODIFIED or ATTIME:
The nodeld of the Nodes whose historical values are to be read. The value
returned shall always include a timestamp.
If the HistoryReadDetails is EVENTS:
The Nodeld of the Node whose Event history is to be read.
If the Node does not support the requested access for historical values or
historical Events the appropriate error response for the given Node shall be
generated.
indexRange NumericRange This parameter is used to identify a single element of an array, or a single

range of indexes for arrays. If a range of elements is specified, the values are
returned as a composite. The first element is identified by index 0 (zero). The
NumericRange type is defined in 7.27.

This parameter is null or empty if the value is not an array. However, if the
value is an array, and this parameter is null or empty, then all elements are to
be included in the range.

dataEncoding

QualifiedName

A QualifiedName that specifies the data encoding to be returned for the Value
to be read (see 7.29 for definition how to specify the data encoding).

This parameter only applies if the DataType of the Variable is a subtype of
Structure. It is an error to specify this parameter if the DataType of the Variable
is not a subtype of Structure.

The parameter is ignored when reading history of Events.

continuationPoint

ContinuationPoint

For each NodesToRead item this parameter specifies a continuation point
returned from a previous HistoryRead call, allowing the Client to continue that
read from the last value received.

The HistoryRead is used to select an ordered sequence of historical values or
events. A continuation point marks a point in that ordered sequence, such that
the Server returns the subset of the sequence that follows that point.

A null or empty value indicates that this parameter is not used.

See 7.9 for a general description of continuation points.

This continuation point is described in more detail in OPC 10000-11.

Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader type).
results [] HistoryReadResult List of read results. The size and order of the list matches the size and order of
the nodesToRead request parameter. This structure is defined in-line with the
following indented items.
statusCode StatusCode StatusCode for the NodesToRead item (see 7.39 for StatusCode definition).

continuationPoint

ContinuationPoint

This parameter is used only if the number of values to be returned is too large
to be returned in a single response or if the timeout provided as hint by the
Client is close to expiring and not all nodes have been processed.

When this parameter is not used, its value is null or empty.

Servers shall support at least one continuation point per Session. Servers
specify a max history continuation points per Session in the Server capabilities
Object defined in OPC 10000-5. A continuation point shall remain active until
the Client passes the continuation point to HistoryRead or the Session is
closed. If the max continuation points have been reached the oldest
continuation point shall be reset.

historyData Extensible The history data returned for the Node.
Parameter The HistoryData parameter type is an extensible parameter type formally
HistoryData defined in OPC 10000-11. It specifies the types of history data that can be

returned. The ExtensibleParameter base type is defined in 7.17.

1.05.04 56 OPC 10000-4: Services

Name Type
diagnosticInfos [] Diagnostic Info

Description

List of diagnostic information. The size and order of the list matches the size
and order of the nodesToRead request parameter. There is one entry in this list
for each Node contained in the nodesToRead parameter. This list is empty if
diagnostics information was not requested in the request header or if no
diagnostic information was encountered in processing of the request.

5.11.3.3 Service results

Table 57 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 57 — HistoryRead Service Result Codes

Symbolic Id

Bad_NothingToDo
Bad_TooManyOperations
Bad_TimestampsToReturninvalid
Bad_HistoryOperationinvalid
Bad_HistoryOperationUnsupported

Description

See Table 182 for the description of this result code.

See Table 182 for the description of this result code.

See Table 182 for the description of this result code.

See Table 183 for the description of this result code.

See Table 183 for the description of this result code.

The requested history operation is not supported by the Server.

5.11.3.4 StatusCodes

Table 58 defines values for the operation level statusCode parameter that are specific to this
Service. Common StatusCodes are defined in Table 183. History access specific StatusCodes are
defined in OPC 10000-11.

Table 58 — HistoryRead Operation Level Result Codes

Symbolic Id

Description

Bad_NodeldInvalid

See Table 183 for the description of this result code.

Bad_NodeldUnknown

See Table 183 for the description of this result code.

Bad_DataEncodinglnvalid

See Table 183 for the description of this result code.

Bad_DataEncodingUnsupported

See Table 183 for the description of this result code.

Bad_UserAccessDenied

See Table 182 for the description of this result code.

Bad_ContinuationPointInvalid

See Table 182 for the description of this result code.

Bad_IndexRangelnvalid

See Table 183 for the description of this result code.

Bad_IndexRangeNoData

See Table 183 for the description of this result code.

Bad_HistoryOperationUnsupported

See Table 183 for the description of this result code.

The requested history operation is not supported for the requested node.
See Table 183 for the description of this result code.
See 7.9 for the rules to apply this status code.

Bad_NoContinuationPoints

5.11.4 Write
5.11.4.1 Description

This Service is used to write values to one or more Attributes of one or more Nodes. For constructed
Attribute values whose elements are indexed, such as an array, this Service allows Clients to write
the entire set of indexed values as a composite, to write individual elements or to write ranges of
elements of the composite.

The values are written to the data source, such as a device, and the Service does not return until it
writes the values or determines that the value cannot be written. In certain cases, the Server will
successfully write to an intermediate system or Server, and will not know if the data source was
updated properly. In these cases, the Server should report a success code that indicates that the
write was not verified. In the cases where the Server is able to verify that it has successfully written
to the data source, it reports an unconditional success.

The order the operations are processed in the Server is not defined and depends on the different
data sources and the internal Server logic. If an Attribute and Node combination is contained in
more than one operation, the order of the processing is undefined. If a Client requires sequential
processing the Client needs separate Service calls.

OPC 10000-4: Services 57 1.05.04

It is possible that the Server may successfully write some Attributes, but not others. Rollback is the
responsibility of the Client.

If a Server allows writing of Attributes with the DataType LocalizedText, the Client can add or
overwrite the text for a locale by writing the text with the associated Localeld. Writing a null String
for the text for a locale shall delete the String for that locale. Writing a null String for the locale and
a non-null String for the text is setting the text for an invariant locale. Writing a null String for the
text and a null String for the locale shall delete the entries for all locales. If a Client attempts to write
a locale that is either syntactically invalid or not supported, the Server returns
Bad_LocaleNotSupported. The Write behaviour for Value Attributes with a LocalizedText DataType
is Server specific but it is recommended to follow the same rules.

5.11.4.2 Parameters
Table 59 defines the parameters for the Service.

Table 59 — Write Service Parameters

Name

Type

Description

Request

requestHeader

RequestHeader

Common request parameters (see 7.33 for RequestHeader definition).

nodesToWrite []

WriteValue

List of Nodes and their Attributes to write. This structure is defined in-line with the
following indented items.

nodeld

Nodeld

Nodeld of the Node that contains the Attributes.

attributeld

Integerld

Id of the Attribute. This shall be a valid Attribute id. The Integerld is defined in 7.19.
The Integerlds for the Attributes are defined in OPC 10000-6.

indexRange

NumericRange

This parameter is used to identify a single element of an array, or a single range of
indexes for arrays. The array in this context includes String and ByteString. The first
element is identified by index O (zero). The NumericRange type is defined in 7.27.
This parameter is not used if the specified Attribute is not an array. However, if the
specified Attribute is an array and this parameter is not used, then all elements are
to be included in the range. The parameter is null or empty if not used.

A Server shall return a Bad_WriteNotSupported error if an indexRange is provided
and writing of indexRange is not possible for the Node.

value

DataValue

The Node’s Attribute value (see 7.11 for DataValue definition).

If the indexRange parameter is specified then the Value shall be an array even if
only one element is being written.

If the SourceTimestamp or the ServerTimestamp is specified, the Server shall use
these values. The Server returns a Bad_WriteNotSupported error if it does not
support writing of timestamps.

A Server shall return a Bad_TypeMismatch error if the data type of the written value
is not the same type or subtype of the Attribute’s DataType. Based on the DataType
hierarchy, subtypes of the Attribute DataType shall be accepted by the Server.
Servers may reject subtypes defined in newer specification versions than supported
by the Server with Bad_TypeMismatch. For the Value Attribute the DataType is
defined through the DataType Attribute. A ByteString is structurally the same as a
one dimensional array of Byte. A Server shall accept a ByteString if an array of Byte
is expected.

The Server returns a Bad_DataEncodingUnsupported error if it does not support the
provided data encoding.

Simple DataTypes (see OPC 10000-3) use the same representation on the wire as
their super types and therefore writing a value of a simple DataType cannot be
distinguished from writing a value of its super type. The Server shall assume that by
receiving the correct wire representation for a simple DataType the correct type was
chosen. Servers are allowed to impose additional data validations on the value
independent of the encoding (e.g. having an image in GIF format in a ByteString). In
this case the Server shall return a Bad_TypeMismatch error if the validation fails.

Response

responseHeader

ResponseHeader

Common response parameters (see 7.34 for ResponseHeader definition).

results []

StatusCode

List of results for the Nodes to write (see 7.39 for StatusCode definition). The size
and order of the list matches the size and order of the nodesToWrite request
parameter. There is one entry in this list for each Node contained in the
nodesToWrite parameter.

diagnosticInfos []

Diagnosticlnfo

List of diagnostic information for the Nodes to write (see 7.12 for DiagnosticInfo
definition). The size and order of the list matches the size and order of the
nodesToWrite request parameter. This list is empty if diagnostics information was
not requested in the request header or if no diagnostic information was encountered
in processing of the request.

1.05.04 58 OPC 10000-4: Services

5.11.4.3 Service results

Table 60 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 60 — Write Service Result Codes

Symbolic Id Description
Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.

5.11.4.4 StatusCodes

Table 61 defines values for the results parameter that are specific to this Service. Common
StatusCodes are defined in Table 183.

Table 61 — Write Operation Level Result Codes

Symbolic Id Description

Good_CompletesAsynchronously | See Table 182 for the description of this result code.

The value was successfully written to an intermediate system but the Server does not know if
the data source was updated properly.

Bad_NodeldInvalid See Table 183 for the description of this result code.
Bad_NodeldUnknown See Table 183 for the description of this result code.
Bad_Attributeldinvalid See Table 183 for the description of this result code.
Bad_IndexRangelnvalid See Table 183 for the description of this result code.

It is also used if writing of IndexRange is supported in general for a Node but the passed
IndexRange cannot be written by the Server.

Bad_IndexRangeNoData See Table 183 for the description of this result code.
Bad_IndexRangeDataMismatch The data to be written does not match the IndexRange.
Bad_WriteNotSupported The requested write operation is not supported.

If a Client attempts to write any value, status code, timestamp combination and the Server
does not support the requested combination (which could be a single quantity such as just
timestamp); than the Server shall not perform any write on this Node and shall return this
StatusCode for this Node. It is also used if writing of IndexRanges is not supported for a

Node.
Bad_NotWritable See Table 183 for the description of this result code.
Bad_UserAccessDenied See Table 182 for the description of this result code.

The current user does not have permission to write the attribute.
Bad_OutOfRange See Table 183 for the description of this result code.

If a Client attempts to write a value outside the valid range like a value not contained in the
enumeration data type of the Node, the Server shall return this StatusCode for this Node.
This result code can be returned for any value that has the right DataType but does not
comply with the restrictions defined by the Server implementation e.g. if a written String
contains unsupported characters.

Bad_TypeMismatch See Table 183 for the description of this result code.
Bad_DataEncodingUnsupported See Table 183 for the description of this result code.
Bad_NoCommunication See Table 183 for the description of this result code.
Bad_LocaleNotSupported The locale in the requested write operation is not supported.

5.11.5 HistoryUpdate
5.11.5.1 Description

This Service is used to update historical values or Events of one or more Nodes. Several request
parameters indicate how the Server is to update the historical value or Event. Valid actions are
Insert, Replace or Delete.

5.11.5.2 Parameters

Table 62 defines the parameters for the Service.

OPC 10000-4: Services 59 1.05.04

Table 62 — HistoryUpdate Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
historyUpdateDetails [| | Extensible The details defined for this update. The HistoryUpdateDetails parameter type is
Parameter an extensible parameter type formally defined in OPC 10000-11. It specifies the
HistoryUpdate types of history updates that can be performed. The ExtensibleParameter type
Details is defined in 7.17.
Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).
results [] HistoryUpdate List of update results for the history update details. The size and order of the
Result list matches the size and order of the details element of the

historyUpdateDetails parameter specified in the request. This structure is
defined in-line with the following indented items.

statusCode StatusCode StatusCode for the update of the Node (see 7.39 for StatusCode definition).
operationResults [] StatusCode List of StatusCodes for the operations to be performed on a Node. The size
and order of the list matches the size and order of any list defined by the details
element being reported by this result entry.

diagnosticinfos [] DiagnosticInfo List of diagnostic information for the operations to be performed on a Node (see
7.12 for Diagnosticlnfo definition). The size and order of the list matches the
size and order of any list defined by the details element being reported by this
results entry. This list is empty if diagnostics information was not requested in
the request header or if no diagnostic information was encountered in
processing of the request.

diagnosticinfos [] Diagnosticinfo List of diagnostic information for the history update details. The size and order
of the list matches the size and order of the details element of the
historyUpdateDetails parameter specified in the request. This list is empty if
diagnostics information was not requested in the request header or if no
diagnostic information was encountered in processing of the request.

5.11.5.3 Service results

Table 63 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 63 — HistoryUpdate Service Result Codes

Symbolic Id Description
Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.

5.11.5.4 StatusCodes

Table 64 defines values for the statusCode and operationResults parameters that are specific to
this Service. Common StatusCodes are defined in Table 183. History access specific StatusCodes
are defined in OPC 10000-11.

Table 64 — HistoryUpdate Operation Level Result Codes

Symbolic Id Description
Bad_NotWritable See Table 183 for the description of this result code.
Bad_HistoryOperationinvalid See Table 183 for the description of this result code.
Bad_HistoryOperationUnsupported See Table 183 for the description of this result code.
Bad_UserAccessDenied See Table 182 for the description of this result code.

The current user does not have permission to update the history.

5.12 Method Service Set
5.12.1 Overview

Methods represent the function calls of Objects. They are defined in OPC 10000-3. Methods are
invoked and return only after completion (successful or unsuccessful). Execution times for Methods
may vary, depending on the function that they perform.

The Method Service Set defines the means to invoke Methods. A Method shall be a component of
an Object. Discovery is provided through the Browse and Query Services. Clients discover the

1.05.04 60 OPC 10000-4: Services

Methods supported by a Server by browsing for the owning Objects References that identify their
supported Methods.

Because Methods may control some aspect of plant operations, Method invocation may depend on
environmental or other conditions. This may be especially true when attempting to re-invoke a
Method immediately after it has completed execution. Conditions that are required to invoke the
Method might not yet have returned to the state that permits the Method to start again.

5.12.2 Call
5.12.2.1 Description
This Service is used to call (invoke) a list of Methods.

This Service provides for passing input and output arguments to/from a Method. These arguments
are defined by Properties of the Method.

If the Method is invoked in the context of a Session and the Session is terminated, the results of the
Method’s execution cannot be returned to the Client and are discarded. This is independent of the
task actually performed at the Server.

The order the operations are processed in the Server is not defined and depends on the different
tasks and the internal Server logic. If a Method is contained in more than one operation, the order
of the processing is undefined. If a Client requires sequential processing the Client needs separate
Service calls.

5.12.2.2 Parameters
Table 65 defines the parameters for the Service.

OPC 10000-4: Services 61 1.05.04

Table 65 — Call Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader
definition).
methodsToCall [] CallMethodRequest | List of Methods to call. This structure is defined in-line with the
following indented items.
objectld Nodeld The Nodeld shall be that of the Object or ObjectType on which

the Method is invoked.

In case of an ObjectType the ObjectType or a super type of the
ObjectType shall be the source of a HasComponent Reference
(or subtype of HasComponent Reference) to the Method
specified in methodld.

In case of an Object the Object or the ObjectType of the Object
or a super type of that ObjectType shall be the source of a
HasComponent Reference (or subtype of HasComponent
Reference) to the Method specified in methodld.

See OPC 10000-3 for a description of Objects and their Methods.
methodld Nodeld Nodeld of the Method to invoke.

If the objectld is the Nodeld of an Object, it is allowed to use the
Nodeld of a Method that is the target of a HasComponent
Reference from the ObjectType of the Object.

inputArguments] BaseDataType List of input argument values. An empty list indicates that there
are no input arguments. The size and order of this list matches
the size and order of the input arguments defined by the input
InputArguments Property of the Method.

The name, a description and the data type of each argument are
defined by the Argument structure in each element of the
method’s InputArguments Property.

Fewer arguments than the total number of input arguments
defined may be passed by the Client when optional input
arguments are defined. A Method may define input arguments as
optional by including HasOptionallnputArgumentDescription
references to argument metadata. The InputArguments Property
and the HasOptionallnputArgumentDescription ReferenceType
are defined in OPC 10000-3.

Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader
definition).
results [] CallMethodResult Result for the Method calls. This structure is defined in-line with
the following indented items.
statusCode StatusCode StatusCode of the Method executed in the Server. This

StatusCode is set to the Bad_InvalidArgument StatusCode if at
least one input argument broke a constraint (e.g. wrong data
type, value out of range).

This StatusCode is set to a bad StatusCode if the Method
execution failed in the Server, e.g. based on an exception.

If the Method execution fails but the outputArguments provide
additional information like an application specific error code, the
Method should return a StatusCode with Severity Uncertain.
inputArgumentResults [] StatusCode List of StatusCodes corresponding to the inputArguments.

This list is empty unless the operation level result is
Bad_InvalidArgument.

If this list is populated, it has the same length as the
inputArguments list.

inputArgumentDiagnosticinfos [| | Diagnosticlnfo List of diagnostic information corresponding to the
inputArguments. This list is empty if diagnostics information was
not requested in the request header or if no diagnostic
information was encountered in processing of the request.
outputArguments [] BaseDataType List of output argument values. An empty list indicates that there
are no output arguments. The size and order of this list matches
the size and order of the output arguments defined by the
OutputArguments Property of the Method.

The name, a description and the data type of each argument are
defined by the Argument structure in each element of the
methods OutputArguments Property.

The list shall be empty if the statusCode Severity is Bad.
diagnosticInfos [] Diagnosticlnfo List of diagnostic information for the statusCode of the results.
This list is empty if diagnostics information was not requested in
the request header or if no diagnostic information was
encountered in processing of the request.

1.05.04 62 OPC 10000-4: Services

5.12.2.3 Service results

Table 66 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 66 — Call Service Result Codes

Symbolic Id
Bad_NothingToDo
Bad_TooManyOperations

Description
See Table 182 for the description of this result code.
See Table 182 for the description of this result code.

5.12.2.4 StatusCodes

Table 67 defines values for the statusCode parameter and Table 68 defines values for the
inputArgumentResults parameter that are specific to this Service. Common StatusCodes are defined
in Table 183.

Server vendors or OPC UA companion specifications may reuse existing StatusCodes for
application specific error information. This is valid as long as the canonical description of the
StatusCode does not have a different meaning than the application specific description. To eliminate
any vagueness, the Server should include the application specific description in the Diagnosticlnfo.

Good StatusCodes with sub-status shall not be used as statusCode since many programming
language bindings would cause such codes to throw an exception.

Table 67 — Call Operation Level Result Codes

Symbolic Id

Description

Bad_NodeldInvalid

See Table 183 for the description of this result code.
Used to indicate that the specified objectld is not an Object or ObjectType.

Bad_NodeldUnknown

See Table 183 for the description of this result code.
Used to indicate that the specified objectld refers to a node that does not exist in the Server
address space.

Bad_NotExecutable

The executable Attribute does not allow the execution of the Method.

Bad_ArgumentsMissing

The Client did not specify all of the non-optional input arguments for the Method.

Bad_TooManyArguments

The Client specified more input arguments than defined for the Method.

Bad_InvalidArgument

See Table 182 for the description of this result code.
Used to indicate in the operation level results that one or more of the input arguments are
invalid. The inputArgumentResults contain the specific status code for each invalid argument.

Bad_UserAccessDenied

See Table 182 for the description of this result code.

Bad_SecurityModelnsufficient

See Table 183 for the description of this result code.

Bad_MethodInvalid

The method id does not refer to a Method for the specified Object.

Bad_NoCommunication

See Table 183 for the description of this result code.

Bad_NotSupported

See Table 183 for the description of this result code.
The Method is not supported for the Object instance.

Uncertain The Method execution fails but the outputArguments provide additional information like an
application specific error code.
Table 68 — Call Input Argument Result Codes
Symbolic Id Description

Bad_OutOfRange

See Table 183 for the description of this result code.
Used to indicate that an input argument is outside the acceptable range.

Bad_TypeMismatch

See Table 183 for the description of this result code.
Used to indicate that an input argument does not have the correct data type.

A ByteString is structurally the same as a one dimensional array of Byte. A Server shall accept a

ByteString if an array of Byte is expected.

Bad_DecodingError

See Table 182 for the description of this result code.
Used to indicate that an input argument with a Structure DataType cannot be decoded.

OPC 10000-4: Services 63 1.05.04

5.13 Monitoredltem Service Set
5.13.1 Monitoredltem model
5.13.1.1 Overview

Clients define Monitoredltems to subscribe to data and Events. Each Monitoredltem identifies the
item to be monitored and the Subscription to use to send Notifications. The item to be monitored
may be any Node Attribute.

Notifications are data structures that describe the occurrence of data changes and Events. They are
packaged into NotificationMessages for transfer to the Client. The Subscription periodically sends
NotificationMessages at a user-specified publishing interval, and the cycle during which these
messages are sent is called a publishing cycle.

Four primary parameters are defined for Monitoredltems that tell the Server how the item is to be
sampled, evaluated and reported. These parameters are the sampling interval, the monitoring mode,
the filter and the queue parameter. Figure 15 illustrates these concepts.

Reporting may Reporting forthe ~ The monitoring mode defines whether sampling Sampling for the
be enabled or monitored item and reporting of notifications is enabled or disabled monitored item
disabled for the

subscription. l /
/ \-|I|I|]-<H Monitored Item |)| Attribute O
~N The sampling interval
<«—>~— Subscription _m:m_<l_| Monitored Item :D| Variable —— defines the cyclic rate
used by the server to

sample the real item.
Monitored Item |)| Node O

Queue attributes describe the / \ \
queueing of notifications to a Filters are used to select A monitored item may monitor an attribute,
subscription samples or events to report a value, or a node providing events

Figure 15 — Monitoreditem model

Attributes, other than the Value Attribute, are only monitored for a change in value. The filter is not
used for these Attributes. Any change in value for these Attributes causes a Notification to be
generated.

The Value Attribute is used when monitoring Variables. Variable values are monitored for a change
in value or a change in their status. The filters defined in this document (see 7.22.2) and in OPC
10000-8 are used to determine if the value change is large enough to cause a Notification to be
generated for the Variable.

Objects and views can be used to monitor Events. Events are only available from Nodes where the
SubscribeToEvents bit of the EventNotifier Attribute is set. The filter defined in this document (see
7.22.3) is used to determine if an Event received from the Node is sent to the Client. The filter also
allows selecting fields of the EventType that will be contained in the Event such as Eventld,
EventType, SourceNode, Time and Description.

OPC 10000-3 describes the Event model and the base EventTypes.

The Properties of the base EventTypes and the representation of the base EventTypes in the
AddressSpace are specified in OPC 10000-5.

5.13.1.2 Sampling interval

Each Monitoreditem created by the Client is assigned a sampling interval that is either inherited
from the publishing interval of the Subscription or that is defined specifically to override that rate. A
negative number indicates that the default sampling interval defined by the publishing interval of the
Subscription is requested. The sampling interval indicates the fastest rate at which the Server should
sample its underlying source for data changes.

A Client shall define a sampling interval of O if it subscribes for Events.

1.05.04 64 OPC 10000-4: Services

The assigned sampling interval defines a “best effort” cyclic rate that the Server uses to sample the
item from its source. “Best effort” in this context means that the Server does its best to sample at
this rate. Sampling at rates faster than this rate is acceptable, but not necessary to meet the needs
of the Client. How the Server deals with the sampling rate and how often it actually polls its data
source internally is a Server implementation detail. However, the time between values returned to
the Client shall be greater or equal to the sampling interval.

The Client may also specify 0 for the sampling interval, which indicates that the Server should use
the fastest practical rate. It is expected that Servers will support only a limited set of sampling
intervals to optimize their operation. If the exact interval requested by the Client is not supported by
the Server, then the Server assigns to the Monitoredltem the most appropriate interval as
determined by the Server. It returns this assigned interval to the Client. The ServerCapabilities
Object defined in OPC 10000-5 identifies the minimum sampling interval supported by the Server.
The optional MinimumSamplinginterval Attribute defined in OPC 10000-3 identifies the minimum
sampling interval supported for a Variable. If a Server uses a fixed set of sampling intervals, the
intervals can be exposed using the SamplinglntervalDiagnosticsArray in the ServerDiagnostics
Object defined in OPC 10000-5.

The Server may support data that is collected based on a sampling model or generated based on
an exception-based model. The fastest supported sampling interval may be equal to 0, which
indicates that the data item is exception-based rather than being sampled at some period. An
exception-based model means that the underlying system does not require sampling and reports
data changes.

The Client may use the revised sampling interval values as a hint for setting the publishing interval
as well as the keep-alive count of a Subscription. If, for example, the smallest revised sampling
interval of the Monitoredltems is 5 seconds, then the time before a keep-alive is sent should be
longer than 5 seconds.

Note that, in many cases, the OPC UA Server provides access to a decoupled system and therefore
has no knowledge of the data update logic. In this case, even though the OPC UA Server samples
at the negotiated rate, the data might be updated by the underlying system at a much slower rate.
In this case, changes can only be detected at this slower rate.

If the behaviour by which the underlying system updates the item is known, it will be available via
the MinimumSamplinginterval Attribute defined in OPC 10000-3. If the Server specifies a value for
the MinimumSamplinginterval Attribute it shall always return a revisedSamplinglnterval that is equal
or higher than the MinimumSamplinglinterval if the Client subscribes to the Value Attribute.

Clients should also be aware that the sampling by the OPC UA Server and the update cycle of the
underlying system are usually not synchronized. This can cause additional delays in change
detection, as illustrated in Figure 16.

OPC 10000-4: Services 65 1.05.04

Change detected via
sampling at “28”.

0 10 20 30 40))
| | | | | Time axis

| | | | | ©)

Sampling (every
10s)

Update Cycle of
underlying system
(every 15 s)

Actual change occurs at “12”

Figure 16 — Typical delay in change detection

5.13.1.3 Monitoring mode

The monitoring mode parameter is used to enable and disable the sampling of a Monitoredltem, and
also to provide for independently enabling and disabling the reporting of Notifications. This capability
allows a Monitoredltem to be configured to sample, sample and report, or neither. Disabling
sampling does not change the values of any of the other Monitoreditem parameter, such as its
sampling interval.

When a Monitoreditem is enabled (i.e. when the MonitoringMode is changed from DISABLED to
SAMPLING or REPORTING) or it is created in the enabled state, the Server shall report the first
sample as soon as possible and the time of this sample becomes the starting point for the next
sampling interval.

5.13.1.4 Filter

Each time a Monitoredltem is sampled, the Server evaluates the sample using the filter defined for
the Monitoredltem. The filter parameter defines the criteria that the Server uses to determine if a
Notification should be generated for the sample. The type of filter is dependent on the type of the
item that is being monitored. For example, the DataChangeFilter and the AggregateFilter are used
when monitoring Variable Values and the EventFilter is used when monitoring Events. Sampling and
evaluation, including the use of filters, are described in this document. Additional filters may be
defined in other parts of OPC 10000.

5.13.1.5 Queue parameters

If the sample passes the filter criteria, a Notification is generated and queued for transfer by the
Subscription. The size of the queue is defined when the Monitoredltem is created. When the queue
is full and a new Notification is received, the Server either discards the oldest Notification and
gueues the new one, or it replaces the last value added to the queue with the new one. The
Monitoredltem is configured for one of these discard policies when the Monitoredltem is created. If
a Notification is discarded for a DataValue and the size of the queue is larger than one, then the
Overflow bit (flag) in the InfoBits portion of the DataValue statusCode is set. If discardOldest is
TRUE, the oldest value gets deleted from the queue and the next value in the queue gets the flag
set. If discardOldest is FALSE, the last value added to the queue gets replaced with the new value.
The new value gets the flag set to indicate the lost values in the next NotificationMessage. Figure
17 illustrates the queue overflow handling.

1.05.04 66 OPC 10000-4: Services

Sampling Sampling Sampling Sampling Sampling Sampling
Value 1 2 3 4 5 6
Nodel | | | | | | Time axis
1 1 1 T 1 1 >
Monitored Item 1 1 2 3 4 5 6
NodeToMonitor = Nodel 1 2 3 4 5
DiscardOldest = TRUE 1 > 3 4
QueueSize =4 1 > 3 T T—
— — — — — Overflow
— — — — — — bit set
Monitored Item 2 —
_— 1 2 3 4 5 16|
NodeToMonitor = Nodel 1 2 3 3 3
DiscardOldest = FALSE
- || | 1 | 2 | | 2 | | 2 |
QueueSize = 4
1 1 1
>
Change of queue content

Figure 17 — Queue overflow handling

If the queue size is one, the queue becomes a buffer that always contains the newest Notification.
In this case, if the sampling interval of the Monitoredltem is faster than the publishing interval of the
Subscription, the Monitoredltem will be over sampling and the Client will always receive the most
up-to-date value. The discard policy is ignored if the queue size is one.

On the other hand, the Client may want to subscribe to a continuous stream of Notifications without
any gaps, but does not want them reported at the sampling interval. In this case, the Monitoredltem
would be created with a queue size large enough to hold all Notifications generated between two
consecutive publishing cycles. Then, at each publishing cycle, the Subscription would send all
Notifications queued for the Monitoreditem to the Client. The Server shall return Notifications for
any particular item in the same order they are in the queue.

The Server may be sampling at a faster rate than the sampling interval to support other Clients; the
Client should only expect values at the negotiated sampling interval. The Server may deliver fewer
values than dictated by the sampling interval, based on the filter and implementation constraints. If
a DataChangeFilter is configured for a Monitoredltem, it is always applied to the newest value in the
gueue compared to the current sample.

If, for example, the AbsoluteDeadband in the DataChangeFilter is “10”, the queue could consist of
values in the following order:

e 100
e 111
e 100
e 89

e 100

Queuing of data may result in unexpected behaviour when using a Deadband filter and the number
of encountered changes is larger than the number of values that can be maintained. The new first
value in the queue may not exceed the Deadband limit of the previous value sent to the Client.

The queue size is the maximum value supported by the Server when monitoring Events. In this case,
the Server is responsible for the Event buffer. If Events are lost, an Event of the type
EventQueueOverflowEventType is placed in the queue. This Event is generated when the first Event
is discarded on a Monitoredltem subscribing for Events. It is put into the Queue of the Monitoreditem
in addition to the size of the Queue defined for this Monitoredltem without discarding any other
Event. If discardOldest is set to TRUE it is put at the beginning of the queue and is never discarded,

OPC 10000-4: Services 67 1.05.04

otherwise at the end. An aggregating Server shall not pass on such an Event. It shall be handled
like other connection error scenarios using the SystemStatusChangeEventType with the
ServerState COMMUNICATION_FAULT.

For any fatal error during event processing like out of memory situations, the Server should queue
an SystemStatusChangeEventType event with the ServerState COMMUNICATION_FAULT and the
source set to the Server Object. If there are no resources available at the time the error happens,
the Server should flag an error internally until there are resources to further process Events for the
Monitoredltem.

5.13.1.6 Triggering model

The Monitoredltems Service allows the addition of items that are reported only when some other
item (the triggering item) triggers. This is done by creating links between the triggered items and
the items to report. The monitoring mode of the items to report is set to sampling-only so that it will
sample and queue Notifications without reporting them. Figure 18 illustrates this concept.

Monltored ltem ltems to Report are

monitored items whose

Monitored Item Monltored Item notifications are sent when
/ the triggering item triggers.

M Their lifetime is independent

of the lifetime of the triggered

Triggering links link the triggering item with items items that reference them.

to report. These links are defined for the triggering

item and are deleted when the triggering item is

deleted.

Triggering item defines
a set of triggered items

Figure 18 — Triggering model

The triggering mechanism is a useful feature that allows Clients to reduce the data volume on the
wire by configuring some items to sample frequently but only report when some other Event
happens.

The following triggering behaviours are specified.

a) If the monitoring mode of the triggering item is SAMPLING, then it is not reported when the
triggering item triggers the items to report.

b) If the monitoring mode of the triggering item is REPORTING, then it is reported when the
triggering item triggers the items to report.

c) If the monitoring mode of the triggering item is DISABLED, then the triggering item does not
trigger the items to report.

d) If the monitoring mode of the item to report is SAMPLING, then it is reported when the triggering
item triggers the items to report.

e) If the monitoring mode of the item to report is REPORTING, this effectively causes the triggering
item to be ignored. All notifications of the items to report are sent after the publishing interval
expires.

f) If the monitoring mode of the item to report is DISABLED, then there will be no sampling of the
item to report and therefore no notifications to report.

g) The first trigger shall occur when the first notification is queued for the triggering item after the
creation of the link.

Clients create and delete triggering links between a triggering item and a set of items to report. If
the Monitoredltem that represents an item to report is deleted before its associated triggering link
is deleted, the triggering link is also deleted, but the triggering item is otherwise unaffected.

Deletion of a Monitoreditem should not be confused with the removal of the Attribute that it monitors.
If the Node that contains the Attribute being monitored is deleted, the Monitoredltem generates a
Notification with a StatusCode Bad_NodeldUnknown that indicates the deletion, but the
Monitoreditem is not deleted.

1.05.04 68 OPC 10000-4: Services

5.13.2 CreateMonitoredltems
5.13.2.1 Description

This Service is used to create and add one or more Monitoredltems to a Subscription. A
Monitoredltem is deleted automatically by the Server when the Subscription is deleted. Deleting a
Monitoredltem causes its entire set of triggered item links to be deleted, but has no effect on the
Monitoredltems referenced by the triggered items.

Calling the CreateMonitoredltems Service repetitively to add a small number of Monitoreditems each
time may adversely affect the performance of the Server. Instead, Clients should add a complete
set of Monitoredltems to a Subscription whenever possible.

When a Monitoredltem is added, the Server performs initialization processing for it. The initialization
processing is defined by the Notification type of the item being monitored. Notification types are
specified in this document and in the Access Type Specification parts of OPC 10000, such as OPC
10000-8. See OPC 10000-1 for a description of the Access Type Parts. Clients may receive
Notifications for added Monitoredltems before the CreateMonitoreditems Response is received.
Clients set the ClientHandle for the Monitoreditem in the CreateMonitoreditems Request and are
therefore able to process the Notifications received before the CreateMonitoredltems Response is
received.

When a user adds a monitored item that the user is denied read access to, the add operation for
the item shall succeed and the bad status Bad_NotReadable or Bad_UserAccessDenied shall be
returned in the Publish response. This is the same behaviour for the case where the access rights
are changed after the call to CreateMonitoreditems. If the access rights change to read rights, the
Server shall start sending data for the Monitoredltem. The same procedure shall be applied for an
IndexRange that does not deliver data for the current value but could deliver data in the future.
Servers should return all other errors as CreateMonitoredltems results but all possible errors are
allowed to be returned in the Publish response.

Monitored Nodes can be removed from the AddressSpace after the creation of a Monitoreditem.
This does not affect the validity of the Monitoreditem but a Bad_NodeldUnknown shall be returned
in the Publish response. It is possible that the Monitoredltem becomes valid again if the Node is
added again to the AddressSpace and the Monitoredltem still exists.

If a Nodeld is known to be valid by a Server but the corresponding Node Attributes are currently not
available, the Server may allow the creation of a Monitoredltem and return an appropriate Bad
StatusCode in the Publish response.

The return diagnostic info setting in the request header of the CreateMonitoreditems or the last
ModifyMonitoreditems Service is applied to the Monitored Items and is used as the diagnostic
information settings when sending Notifications in the Publish response.

lllegal request values for parameters that can be revised do not generate errors. Instead the Server
will choose default values and indicate them in the corresponding revised parameter.

It is strongly recommended by OPC UA that a Client reuses a Subscription after a short network
interruption by activating the existing Session on a new SecureChannel as described in 6.7. If a
Client called CreateMonitoredltems during the network interruption and the call succeeded in the
Server but did not return to the Client, then the Client does not know if the call succeeded. The
Client may receive data changes for these monitored items but is not able to remove them since it
does not know the Server handle for each monitored item. There is also no way for the Client to
detect if the create succeeded. To delete and recreate the Subscription is also not an option since
there may be several monitored items operating normally that should not be interrupted. To resolve
this situation, the Server Object provides a Method GetMonitoredIltems that returns the list of Server
and client handles for the monitored items in a Subscription. This Method is defined in OPC 10000-
5. The Server shall verify that the Method is called within the Session context of the Session that
owns the Subscription.

5.13.2.2 Parameters

Table 69 defines the parameters for the Service.

OPC 10000-4: Services

69 1.05.04

Table 69 — CreateMonitoredltems Service Parameters

Name Type Description
Request
requestHeader RequestHeader | Common request parameters (see 7.33 for RequestHeader definition).
subscriptionld Integerld The Server-assigned identifier for the Subscription that will report Notifications
for this Monitoredltem (see 7.19 for Integerld definition).
timestampsToReturn Enum An enumeration that specifies the timestamp Attributes to be transmitted for
Timestamps each Monitoredltem. The TimestampsToReturn enumeration is defined in
ToReturn 7.40.

When monitoring Events, this applies only to Event fields that are of type
DataValue.

itemsToCreate []

Monitoredltem

A list of Monitoredltems to be created and assigned to the specified

CreateRequest Subscription. This structure is defined in-line with the following indented items.
itemToMonitor ReadValueld Identifies an item in the AddressSpace to monitor. To monitor for Events, the
attributeld element of the ReadValueld structure is the id of the EventNotifier
Attribute. The ReadValueld type is defined in 7.29.
monitoringMode Enum The monitoring mode to be set for the Monitoredltem. The MonitoringMode
MonitoringMode | enumeration is defined in 7.23.
requestedParameters Monitoring The requested monitoring parameters. Servers negotiate the values of these
Parameters parameters based on the Subscription and the capabilities of the Server. The
MonitoringParameters type is defined in 7.21.
Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header
results [] Monitoreditem List of results for the Monitoredltems to create. The size and order of the list
CreateResult matches the size and order of the itemsToCreate request parameter. This
structure is defined in-line with the following indented items.

statusCode StatusCode StatusCode for the Monitoredltem to create (see 7.39 for StatusCode
definition).

monitoreditemld Integerld Server-assigned id for the Monitoredltem (see 7.19 for Integerld definition).
This id is unique within the Subscription, but might not be unique within the
Server or Session. This parameter is present only if the statusCode indicates
that the Monitoredltem was successfully created.

revisedSampling Duration The actual sampling interval that the Server will use.

Interval This value is based on a number of factors, including capabilities of the
underlying system. The Server shall always return a revisedSamplingInterval
that is equal or higher than the requested samplinginterval. If the requested
samplinglnterval is higher than the maximum sampling interval supported by
the Server, the maximum sampling interval is returned.

revisedQueueSize Counter The actual queue size that the Server will use.

filterResult Extensible Contains any revised parameter values or error results associated with the

Parameter MonitoringFilter specified in requestedParameters. This parameter may be null

MonitoringFilter
Result

if no errors occurred. The MonitoringFilterResult parameter type is an
extensible parameter type specified in 7.22.

diagnosticinfos []

DiagnosticInfo

List of diagnostic information for the Monitoredltems to create (see 7.12 for
Diagnosticlnfo definition). The size and order of the list matches the size and
order of the itemsToCreate request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic
information was encountered in processing of the request.

5.13.2.3 Service results

Table 70 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 70 — CreateMonitoredltems Service Result Codes

Symbolic Id

Description

Bad_NothingToDo

See Table 182 for the description of this result code.

Bad_TooManyOperations

See Table 182 for the description of this result code.

Bad_TimestampsToReturninvalid

See Table 182 for the description of this result code.

Bad_Subscriptionldinvalid

See Table 182 for the description of this result code.

5.13.2.4 StatusCodes

Table 71 defines values for the operation level statusCode parameter that are specific to this
Service. Common StatusCodes are defined in Table 183.

1.05.04 70 OPC 10000-4: Services

Table 71 — CreateMonitoredltems Operation Level Result Codes

Symbolic Id Description

Bad_MonitoringModelnvalid See Table 183 for the description of this result code.
Bad_NodeldInvalid See Table 183 for the description of this result code.
Bad_NodeldUnknown See Table 183 for the description of this result code.
Bad_Attributeldinvalid See Table 183 for the description of this result code.
Bad_IndexRangelnvalid See Table 183 for the description of this result code.
Bad_IndexRangeNoData See Table 183 for the description of this result code.

If the ArrayDimensions have a fixed length that cannot change and no data exists
within the range of indexes specified, Bad_IndexRangeNoData is returned in
CreateMonitoredltems. Otherwise if the length of the array is dynamic, the Server shall
return this status in a Publish response for the Monitoredltem if no data exists within the

range.
Bad_DataEncodinglnvalid See Table 183 for the description of this result code.
Bad_DataEncodingUnsupported See Table 183 for the description of this result code.
Bad_MonitoredltemFilterInvalid See Table 183 for the description of this result code.
Bad_MonitoredltemFilterUnsupported See Table 183 for the description of this result code.
Bad_FilterNotAllowed See Table 183 for the description of this result code.
Bad_TooManyMonitoreditems The Server has reached its maximum number of monitored items.

5.13.3 ModifyMonitoreditems
5.13.3.1 Description

This Service is used to modify Monitoredltems of a Subscription. Changes to the Monitoredltem
settings shall be applied immediately by the Server. They take effect as soon as practical but not
later than twice the new revisedSamplinginterval.

The return diagnostic info setting in the request header of the CreateMonitoreditems or the last
ModifyMonitoreditems Service is applied to the Monitored Items and is used as the diagnostic
information settings when sending Notifications in the Publish response.

lllegal request values for parameters that can be revised do not generate errors. Instead the Server
will choose default values and indicate them in the corresponding revised parameter.

5.13.3.2 Parameters
Table 72 defines the parameters for the Service.

OPC 10000-4: Services

71 1.05.04

Table 72 — ModifyMonitoredltems Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
subscriptionld Integerld The Server-assigned identifier for the Subscription used to qualify the
monitoredltemld (see 7.19 for Integerld definition).
timestampsToReturn Enum An enumeration that specifies the timestamp Attributes to be transmitted for
Timestamps each Monitoredltem to be modified. The TimestampsToReturn enumeration is
ToReturn defined in 7.40. When monitoring Events, this applies only to Event fields that

are of type DataValue.

itemsToModify []

MonitoredltemMo

The list of Monitoredltems to modify. This structure is defined in-line with the

difyRequest following indented items.
monitoredlteml|d Integerld Server-assigned id for the Monitoredltem.
requestedParameters | Monitoring The requested values for the monitoring parameters. The
Parameters MonitoringParameters type is defined in 7.21.
If the number of notifications in the queue exceeds the new queue size, the
notifications exceeding the size shall be discarded following the configured
discard policy.
Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header
results [] MonitoredltemMo | List of results for the Monitoredltems to modify. The size and order of the list
difyResult matches the size and order of the itemsToModify request parameter. This
structure is defined in-line with the following indented items.
statusCode StatusCode StatusCode for the Monitoredltem to be modified (see 7.39 for StatusCode
definition).
revisedSampling Duration The actual sampling interval that the Server will use. The Server returns the
Interval value it will actually use for the sampling interval. This value is based on a
number of factors, including capabilities of the underlying system.
The Server shall always return a revisedSamplingInterval that is equal or higher
than the requested samplingInterval. If the requested samplingInterval is higher
than the maximum sampling interval supported by the Server, the maximum
sampling interval is returned.
revisedQueueSize Counter The actual queue size that the Server will use.
filterResult Extensible Contains any revised parameter values or error results associated with the
Parameter MonitoringFilter specified in the request. This parameter may be null if no errors

MonitoringFilter
Result

occurred. The MonitoringFilterResult parameter type is an extensible parameter
type specified in 7.22.

diagnosticinfos []

Diagnosticinfo

List of diagnostic information for the Monitoredltems to modify (see 7.12 for
DiagnosticInfo definition). The size and order of the list matches the size and
order of the itemsToModify request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic
information was encountered in processing of the request.

5.13.3.3 Service results

Table 73 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 73 — ModifyMonitoredltems Service Result Codes

Symbolic Id

Description

Bad_NothingToDo

See Table 182 for the description of this result code.

Bad_TooManyOperations

See Table 182 for the description of this result code.

Bad_TimestampsToReturninvalid

See Table 182 for the description of this result code.

Bad_Subscriptionldinvalid

See Table 182 for the description of this result code.

5.13.3.4 StatusCodes

Table 74 defines values for the operation level statusCode parameter that are specific to this
Service. Common StatusCodes are defined in Table 183.

1.05.04 72 OPC 10000-4: Services

Table 74 — ModifyMonitoredltems Operation Level Result Codes

Symbolic Id Description

Bad_Monitoredltemldinvalid See Table 183 for the description of this result code.
Bad_MonitoredltemFilterInvalid See Table 183 for the description of this result code.
Bad_MonitoredltemFilterUnsupported See Table 183 for the description of this result code.
Bad_FilterNotAllowed See Table 182 for the description of this result code.

5.13.4 SetMonitoringMode
5.13.4.1 Description

This Service is used to set the monitoring mode for one or more Monitoreditems of a Subscription.
Setting the mode to DISABLED causes all queued Notifications to be deleted.

5.13.4.2 Parameters
Table 75 defines the parameters for the Service.

Table 75 — SetMonitoringMode Service Parameters

Name Type Description
Request
requestHeader RequestHeader | Common request parameters (see 7.33 for RequestHeader definition).
subscriptionld Integerld The Server-assigned identifier for the Subscription used to qualify the
monitoredltemlds (see 7.19 for Integerld definition).
monitoringMode Enum The monitoring mode to be set for the Monitoreditems. The MonitoringMode
MonitoringMode | enumeration is defined in 7.23.
monitoreditemlds [] Integerld List of Server-assigned ids for the Monitoredltems.
Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header
results [] StatusCode List of StatusCodes for the Monitoredltems to enable/disable (see 7.39 for
StatusCode definition). The size and order of the list matches the size and order
of the monitoredltemlds request parameter.
diagnosticinfos [] Diagnosticinfo List of diagnostic information for the Monitoredltems to enable/disable (see 7.12
for Diagnosticlnfo definition). The size and order of the list matches the size and
order of the monitoreditemlds request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic
information was encountered in processing of the request.

5.13.4.3 Service results

Table 76 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 76 — SetMonitoringMode Service Result Codes

Symbolic Id Description

Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.
Bad_SubscriptionldInvalid See Table 182 for the description of this result code.
Bad_MonitoringModelnvalid See Table 183 for the description of this result code.

5.13.4.4 StatusCodes

Table 77 defines values for the operation level results parameter that are specific to this Service.
Common StatusCodes are defined in Table 183.

Table 77 — SetMonitoringMode Operation Level Result Codes

Symbolic Id Description
Bad_Monitoredltemldinvalid See Table 183 for the description of this result code.

OPC 10000-4: Services 73 1.05.04

5.13.5 SetTriggering
5.13.5.1 Description

This Service is used to create and delete triggering links for a triggering item. The triggering item
and the items to report shall belong to the same Subscription.

Each triggering link links a triggering item to an item to report. Each link is represented by the
Monitoredltem id for the item to report. An error code is returned if this id is invalid.

See 5.13.1.6 for a description of the triggering model.

5.13.5.2 Parameters
Table 78 defines the parameters for the Service.

Table 78 — SetTriggering Service Parameters

Name Type Description

Request
requestHeader Request Common request parameters (see 7.33 for RequestHeader definition).

Header
subscriptionld Integerld The Server-assigned identifier for the Subscription that contains the triggering
item and the items to report (see 7.19 for Integerld definition).

triggeringltemid Integerld Server-assigned id for the Monitoredltem used as the triggering item.
linksToAdd [] Integerld The list of Server-assigned ids of the items to report that are to be added as

triggering links. The list of linksToRemove is processed before the linksToAdd.

linksToRemove [] Integerld The list of Server-assigned ids of the items to report for the triggering links to be
deleted. The list of linksToRemove is processed before the linksToAdd.

Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header
addResults [] StatusCode List of StatusCodes for the items to add (see 7.39 for StatusCode definition).
The size and order of the list matches the size and order of the linksToAdd
parameter specified in the request.
addDiagnosticinfos] Diagnostic List of diagnostic information for the links to add (see 7.12 for Diagnosticlnfo
Info definition). The size and order of the list matches the size and order of the
linksToAdd request parameter. This list is empty if diagnostics information was
not requested in the request header or if no diagnostic information was
encountered in processing of the request.
removeResults [] StatusCode List of StatusCodes for the items to delete. The size and order of the list
matches the size and order of the linksToRemove parameter specified in the
request.
removeDiagnosticlnfos [] Diagnostic List of diagnostic information for the links to delete. The size and order of the list
Info matches the size and order of the linksToRemove request parameter. This list is

empty if diagnostics information was not requested in the request header or if no
diagnostic information was encountered in processing of the request.

5.13.5.3 Service results

Table 79 defines the Service results specific to this Service. Common StatusCodes are defined in
7.39.

Table 79 — SetTriggering Service Result Codes

Symbolic Id Description

Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.
Bad_Subscriptionldinvalid See Table 182 for the description of this result code.
Bad_MonitoredItemldinvalid See Table 183 for the description of this result code.

5.13.5.4 StatusCodes

Table 80 defines values for the results parameters that are specific to this Service. Common
StatusCodes are defined in Table 183.

1.05.04

74 OPC 10000-4: Services

Table 80 — SetTriggering Operation Level Result Codes

Symbolic Id

Description

Bad_Monitoredltemldinvalid

See Table 183 for the description of this result code.

5.13.6 DeleteMonitoredltems

5.13.6.1 Description

This Service is used to remove one or more Monitoredlitems of a Subscription. When a
Monitoredltem is deleted, its triggered item links are also deleted.

Successful removal

of a Monitoreditem, however, might not remove Notifications for the

Monitoredltem that are in the process of being sent by the Subscription. Therefore, Clients may
receive Notifications for the Monitoreditem after they have received a positive response that the
MonitoredItem has been deleted.

5.13.6.2 Parameters

Table 81 defines the parameters for the Service.

Table 81 — DeleteMonitoredltems Service Parameters

Name Type Description

Request
requestHeader RequestHeader | Common request parameters (see 7.33 for RequestHeader definition).
subscriptionld Integerld The Server-assigned identifier for the Subscription that contains the

Monitoredltems to be deleted (see 7.19 for Integerld definition).

monitoreditemlds [] Integerld List of Server-assigned ids for the Monitoredltems to be deleted.

Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).

Header

results [] StatusCode List of StatusCodes for the Monitoredltems to delete (see 7.39 for StatusCode

definition). The size and order of the list matches the size and order of the
monitoredltemlds request parameter.

diagnosticInfos []

Diagnosticinfo

List of diagnostic information for the Monitoredltems to delete (see 7.12 for
DiagnosticInfo definition). The size and order of the list matches the size and
order of the monitoreditemlds request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic
information was encountered in processing of the request.

5.13.6.3 Service results

Table 82 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 82 — DeleteMonitoredltems Service Result Codes

Symbolic Id

Description

Bad_NothingToDo

See Table 182 for the description of this result code.

Bad_TooManyOperations

See Table 182 for the description of this result code.

Bad_Subscriptionldinvalid

See Table 182 for the description of this result code.

5.13.6.4 StatusCodes

Table 83 defines values for the results parameter that are specific to this Service. Common
StatusCodes are defined in Table 183.

Table 83 — DeleteMonitoredltems Operation Level Result Codes

Symbolic Id

Description

Bad_Monitoredltemldinvalid

See Table 183 for the description of this result code.

OPC 10000-4: Services 75 1.05.04

5.14 Subscription Service Set

5.14.1 Subscription model
5.14.1.1 Description

Subscriptions are used to report Notifications to the Client. Their general behaviour is summarized
below. Their precise behaviour is described in 5.14.1.2.

a)

b)

d)

e)

f)

9)

h)

Subscriptions have a set of Monitoredltems assigned to them by the Client. Monitoredltems
generate Notifications that are to be reported to the Client by the Subscription (see 5.13.1 for a
description of Monitoredltems).

Subscriptions have a publishing interval. The publishing interval of a Subscription defines the
cyclic rate at which the Subscription executes. Each time it executes, it attempts to send a
NotificationMessage to the Client. NotificationMessages contain Notifications that have not yet
been reported to Client.

NotificationMessages are sent to the Client in response to Publish requests. Publish requests
are normally queued to the Session as they are received, and one is de-queued and processed
by a Subscription related to this Session for each publishing cycle, if there are Notifications to
report. When there are not, the Publish request is not de-queued from the Session, and the
Server waits until the next cycle and checks again for Notifications.

At the beginning of a cycle, if there are Notifications to send but there are no Publish requests
gueued, the Server enters a wait state for a Publish request to be received. When one is
received, it is processed immediately without waiting for the next publishing cycle.

NotificationMessages are uniquely identified by sequence numbers that enable Clients to detect
missed Messages. The publishing interval also defines the default sampling interval for its
Monitoredltems.

Subscriptions have a keep-alive counter that counts the number of consecutive publishing cycles
in which there have been no Notifications to report to the Client. When the maximum keep-alive
count is reached, a Publish request is de-queued and used to return a keep-alive Message. This
keep-alive Message informs the Client that the Subscription is still active. Each keep-alive
Message is a response to a Publish request in which the notificationMessage parameter does
not contain any Notifications and that contains the sequence number of the next
NotificationMessage that is to be sent. In the clauses that follow, the term NotificationMessage
refers to a response to a Publish request in which the notificationMessage parameter actually
contains one or more Notifications, as opposed to a keep-alive Message in which this parameter
contains no Notifications. The maximum keep-alive count is set by the Client during Subscription
creation and may be subsequently modified using the ModifySubscription Service. Similar to
Notification processing described in (c) above, if there are no Publish requests queued, the
Server waits for the next one to be received and sends the keep-alive immediately without
waiting for the next publishing cycle.

Publishing by a Subscription may be enabled or disabled by the Client when created, or
subsequently using the SetPublishingMode Service. Disabling causes the Subscription to cease
sending NotificationMessages to the Client. However, the Subscription continues to execute
cyclically and continues to send keep-alive Messages to the Client.

Subscriptions have a lifetime counter that counts the number of consecutive publishing cycles
in which there have been no Publish requests available to send a Publish response for the
Subscription. Any Service call that uses the Subscriptionld or the processing of a Publish
response resets the lifetime counter of this Subscription. When this counter reaches the value
calculated for the lifetime of a Subscription, the Subscription is closed. Closing the Subscription
causes its Monitoredltems to be deleted. In addition the Server shall issue a
StatusChangeNotification notificationMessage with the status code Bad_Timeout. The
StatusChangeNotification notificationMessage type is defined in 7.25.4.

Sessions maintain a retransmission queue of sent NotificationMessages. NotificationMessages
are retained in this queue until they are acknowledged. The Session maintains a retransmission
gueue size of at least two times the number of Publish requests per Session the Server supports.
A Profile in OPC 10000-7 may make the retransmission queue support optional. The minimum
number of Publish requests per Session the Server shall support is defined in OPC 10000-7.
Clients are required to acknowledge NotificationMessages as they are received if the Publish

1.05.04 76 OPC 10000-4: Services

response parameter availableSequenceNumbers is not an empty array. An empty array in
availableSequenceNumbers indicates that the Server does not support a retransmission queue
and acknowledgement of NotificationMessages. In the case of a retransmission queue overflow,
the oldest sent NotificationMessage gets deleted. If a Subscription is transferred to another
Session, the queued NotificationMessages for this Subscription are moved from the old to the
new Session.

The sequence number is an unsigned 32-bit integer that is incremented by one for each
NotificationMessage sent. The value 0 is never used for the sequence number. The first
NotificationMessage sent on a Subscription has a sequence number of 1. If the sequence number
rolls over, it rolls over to 1.

When a Subscription is created, the first Message is sent at the end of the first publishing cycle to
inform the Client that the Subscription is operational. A NotificationMessage is sent if there are
Notifications ready to be reported. If there are none, a keep-alive Message is sent instead that
contains a sequence number of 1, indicating that the first NotificationMessage has not yet been
sent. This is the only time a keep-alive Message is sent without waiting for the maximum keep-alive
count to be reached, as specified in (f) above.

A Client shall be prepared for receiving Publish responses for a Subscription more frequently than
the corresponding publishing interval. One example is the situation where the number of available
notifications exceeds the Subscription setting maxNotificationsPerPublish. A Client is always able
to control the timing of the Publish responses by not queueing Publish requests. If a Client does not
gueue Publish requests in the Server, the Server can only send a Publish response if it receives a
new Publish request. This would increase latency for delivery of notifications but allows a Client to
throttle the number of received Publish responses in high load situations.

The value of the sequence number is never reset during the lifetime of a Subscription. Therefore,
the same sequence number shall not be reused on a Subscription until over four billion
NotificationMessages have been sent. At a continuous rate of one thousand NotificationMessages
per second on a given Subscription, it would take roughly fifty days for the same sequence number
to be reused. This allows Clients to safely treat sequence numbers as unique.

Sequence numbers are also used by Clients to acknowledge the receipt of NotificationMessages.
Publish requests allow the Client to acknowledge all Notifications up to a specific sequence number
and to acknowledge the sequence number of the last NotificationMessage received. One or more
gaps may exist in between. Acknowledgements allow the Server to delete NotificationMessages
from its retransmission queue. If the retransmission queue contains outdated sequence numbers
related to the sequence number acknowledged by the Client, the Server may delete these older
NotificationMessage from the retransmission queue. The outdated sequence numbers are
calculated with the following formular.

outdated < acknowledged sequence number — (2 X max retransmission queue size)

Clients may ask for retransmission of selected NotificationMessages using the Republish Service.
This Service returns the requested Message.

Subscriptions are designed to work independent of the actual communication connection between
OPC UA Client and Server and independent of a Session. Short communication interruptions can
be handled without losing data or events. To make sure that longer communication interruptions or
planned disconnects can be handled without losing data or events, an OPC UA Server may support
durable Subscriptions. If this feature is supported, the Server accepts a high Subscription
RequestedLifetimeCount and large Monitoredltem QueueSize parameter settings. Subclause 6.8
describes how durable Subscriptions can be created and used.

5.14.1.2 State table

The state table formally describes the operation of the Subscription. The following model of
operations is described by this state table. This description applies when publishing is enabled or
disabled for the Subscription.

After creation of the Subscription, the Server starts the publishing timer and restarts it whenever it
expires. If the timer expires the number of times defined for the Subscription lifetime without having

OPC 10000-4: Services 77 1.05.04

received a Subscription Service request from the Client, the Subscription assumes that the Client is
no longer present, and terminates.

Clients send Publish requests to Servers to receive Notifications. Publish requests are not directed
to any one Subscription and, therefore, may be used by any Subscription. Each contains
acknowledgements for one or more Subscriptions. These acknowledgements are processed when
the Publish request is received. The Server then queues the request in a queue shared by all
Subscriptions, except in the following cases.

a) The previous Publish response indicated that there were still more Notifications ready to be
transferred and there were no more Publish requests queued to transfer them.

b) The publishing timer of a Subscription expired and there were either Notifications to be sent or
a keep-alive Message to be sent.

In these cases, the newly received Publish request is processed immediately by the first
Subscription to encounter either case (a) or case (b).

Each time the publishing timer expires, it is immediately reset. If there are Notifications or a keep-
alive Message to be sent, it de-queues and processes a Publish request. When a Subscription
processes a Publish request, it accesses the queues of its Monitoreditems and de-queues its
Notifications, if any. It returns these Notifications in the response, setting the moreNotifications flag
if it was not able to return all available Notifications in the response.

If there were Notifications or a keep-alive Message to be sent but there were no Publish requests
gueued, the Subscription assumes that the Publish request is late and waits for the next Publish
request to be received, as described in case (b).

If the Subscription is disabled when the publishing timer expires or if there are no Notifications
available, it enters the keep-alive state and sets the keep-alive counter to its maximum value as
defined for the Subscription.

While in the keep-alive state, it checks for Notifications each time the publishing timer expires. If
one or more Notifications have been generated, a Publish request is de-queued and a
NotificationMessage is returned in the response. However, if the publishing timer expires without a
Notification becoming available, a Publish request is de-queued and a keep-alive Message is
returned in the response. The Subscription then returns to the normal state of waiting for the
publishing timer to expire again. If, in either of these cases, there are no Publish requests queued,
the Subscription waits for the next Publish request to be received, as described in case (b).

The Subscription states are defined in Table 84.

Table 84 — Subscription States

State Description

CLOSED The Subscription has not yet been created or has terminated.

CREATING The Subscription is being created.

NORMAL The Subscription is cyclically checking for Notifications from its Monitoredltems. The keep-alive
counter is not used in this state.

LATE The publishing timer has expired and there are Notifications available or a keep-alive Message is

ready to be sent, but there are no Publish requests queued. When in this state, the next Publish
request is processed when it is received. The keep-alive counter is not used in this state.
KEEPALIVE The Subscription is cyclically checking for Notifications from its Monitoredltems or for the keep-
alive counter to count down to 0 from its maximum.

The state table is described in Table 85. The following rules and conventions apply.
a) Events represent the receipt of Service requests and the occurrence internal Events, such as
timer expirations.

b) Service requests Events may be accompanied by conditions that test Service parameter values.
Parameter names begin with a lower case letter.

c) Internal Events may be accompanied by conditions that test state Variable values. State
Variables are defined in 5.14.1.3. They begin with an upper case letter.

1.05.04 78

OPC 10000-4: Services

d) Service request and internal Events may be accompanied by conditions represented by functions
whose return value is tested. Functions are identified by “()” after their name. They are described
in5.14.1.4.

e) When an Event is received, the first transition for the current state is located and the transitions
are searched sequentially for the first transition that meets the Event or conditions criteria. If
none are found, the Event is ignored.

f) Actions are described by functions and state Variable manipulations.

g) The LifetimeTimerExpires Event is triggered when its corresponding counter reaches zero.

Table 85 — Subscription State Table
Current State Event/Conditions Action Next State
1 CLOSED Receive CreateSubscription Request CreateSubscription() CREATING
2 CREATING CreateSubscription fails ReturnNegativeResponse() CLOSED
3 CREATING CreateSubscription succeeds InitializeSubscription() NORMAL
MessageSent = FALSE
ReturnResponse()
4 NORMAL Receive Publish Request DeleteAckedNotificationMsgs() NORMAL
&& EnqueuePublishingReq()
PublishingEnabled == FALSE
Il
(PublishingEnabled == TRUE
&& MoreNotifications == FALSE)
)
5 NORMAL Receive Publish Request ResetLifetimeCounter() NORMAL
&& PublishingEnabled == TRUE DeleteAckedNotificationMsgs()
&& MoreNotifications == TRUE ReturnNotifications()
MessageSent = TRUE
6 NORMAL PublishingTimer Expires ResetLifetimeCounter() NORMAL
&& PublishingReqQueued == TRUE StartPublishingTimer()
&& PublishingEnabled == TRUE DequeuePublishReq()
&& NotificationsAvailable == TRUE ReturnNotifications()
MessageSent = TRUE
7 NORMAL PublishingTimer Expires ResetLifetimeCounter() NORMAL
&& PublishingReqQueued == TRUE StartPublishingTimer()
&& MessageSent == FALSE DequeuePublishReq()
&& ReturnKeepAlive()
MessageSent = TRUE
PublishingEnabled == FALSE
Il
(PublishingEnabled == TRUE
&& NotificationsAvailable == FALSE)
)
8 NORMAL PublishingTimer Expires StartPublishingTimer() LATE
&& PublishingReqQueued == FALSE
&&
(
MessageSent == FALSE
Il
(PublishingEnabled == TRUE
&& NotificationsAvailable == TRUE)
)
9 NORMAL PublishingTimer Expires StartPublishingTimer() KEEPALIVE
&& MessageSent == TRUE ResetKeepAliveCounter()
&& KeepAliveCounter--
PublishingEnabled == FALSE
Il
(PublishingEnabled == TRUE
&& NotificationsAvailable == FALSE)
)

OPC 10000-4: Services 79 1.05.04
Current State Event/Conditions Action Next State
10 | LATE Receive Publish Request ResetLifetimeCounter() NORMAL

&& PublishingEnabled == TRUE DeleteAckedNotificationMsgs()
&& (NotificationsAvailable == TRUE ReturnNotifications()
|| MoreNotifications == TRUE) MessageSent = TRUE
11 | LATE Receive Publish Request ResetLifetimeCounter() KEEPALIVE
&& DeleteAckedNotificationMsgs()
ReturnKeepAlive()
PublishingEnabled == FALSE MessageSent = TRUE
Il
(PublishingEnabled == TRUE
&& NotificationsAvailable == FALSE
&& MoreNotifications == FALSE)
)
12 LATE PublishingTimer Expires StartPublishingTimer() LATE
13 KEEPALIVE Receive Publish Request DeleteAckedNotificationMsgs() KEEPALIVE
EngueuePublishingReq()
14 KEEPALIVE PublishingTimer Expires ResetLifetimeCounter() NORMAL
&& PublishingEnabled == TRUE StartPublishingTimer()
&& NotificationsAvailable == TRUE DequeuePublishReq()
&& PublishingReqQueued == TRUE ReturnNotifications()
MessageSent = TRUE
15 KEEPALIVE PublishingTimer Expires StartPublishingTimer() KEEPALIVE
&& PublishingReqQueued == TRUE DequeuePublishReq()
&& KeepAliveCounter <=1 ReturnKeepAlive()
&& ResetKeepAliveCounter()
PublishingEnabled == FALSE
Il
(PublishingEnabled == TRUE
&& NotificationsAvailable == FALSE
)
16 | KEEPALIVE PublishingTimer Expires StartPublishingTimer() KEEPALIVE
&& KeepAliveCounter > 1 KeepAliveCounter--
&&
PublishingEnabled == FALSE
Il
(PublishingEnabled == TRUE
&& NotificationsAvailable == FALSE)
)
17 | KEEPALIVE PublishingTimer Expires StartPublishingTimer() LATE
&& PublishingReqQueued == FALSE
&&
KeepAliveCounter ==
Il
(KeepAliveCounter > 1
&& PublishingEnabled == TRUE
&& NotificationsAvailable == TRUE)
)
18 NORMAL Receive ModifySubscription Request ResetLifetimeCounter() SAME
|| LATE && SubscriptionAssignedToSession == TRUE UpdateSubscriptionParams()
|| KEEPALIVE ReturnResponse()
19 | NORMAL Receive SetPublishingMode Request ResetLifetimeCounter() SAME
|| LATE && SubscriptionAssignedToSession == TRUE SetPublishingEnabled()
|| KEEPALIVE MoreNotifications = FALSE
ReturnResponse()
20 | NORMAL Receive Republish Request ResetLifetimeCounter() SAME
|| LATE && RequestedMessageFound == TRUE ReturnResponse()
|| KEEPALIVE
21 NORMAL Receive Republish Request ResetLifetimeCounter() SAME
|| LATE && RequestedMessageFound == FALSE ReturnNegativeResponse()
|| KEEPALIVE
22 NORMAL Receive TransferSubscriptions Request ResetLifetimeCounter() SAME
|| LATE && SessionChanged() == FALSE ReturnNegativeResponse ()
|| KEEPALIVE
23 NORMAL Receive TransferSubscriptions Request SetSession() SAME
|| LATE && SessionChanged() == TRUE ResetlLifetimeCounter()
|| KEEPALIVE && ClientValidated() ==TRUE ReturnResponse()
IssueStatusChangeNoatification()

1.05.04 80 OPC 10000-4: Services
Current State Event/Conditions Action Next State
24 | NORMAL Receive TransferSubscriptions Request ReturnNegativeResponse() SAME

|| LATE && SessionChanged() == TRUE
|| KEEPALIVE && ClientValidated() == FALSE
25 NORMAL Receive DeleteSubscriptions Request DeleteMonitoredltems() CLOSED
|| LATE && SubscriptionAssignedToSession ==TRUE DeleteClientPublRegQueue()
|| KEEPALIVE
26 | NORMAL Receive Subscription related Request ResetLifetimeCounter() SAME
|| LATE && SubscriptionAssignedToSession ==FALSE ReturnNegativeResponse()
|| KEEPALIVE
27 NORMAL LifetimeCounter == DeleteMonitoredltems() CLOSED
|| LATE The LifetimeCounter is decremented if IssueStatusChangeNotification()
|| KEEPALIVE PublishingTimer expires and
PublishingReqQueued == FALSE
The LifetimeCounter is reset if
PublishingReqQueued == TRUE.

5.14.1.3 State variables and parameters

The state variables are defined alphabetically in Table 86.

Table 86 — State variables and parameters

State Variable

Description

MoreNotifications

A boolean value that is set to TRUE only by the CreateNotificationMsg() when there were too
many Notifications for a single NotificationMessage.

LatePublishRequest

A boolean value that is set to TRUE to reflect that, the last time the publishing timer expired,
there were no Publish requests queued.

LifetimeCounter A value that contains the number of consecutive publishing timer expirations without Client
activity before the Subscription is terminated.
MessageSent A boolean value that is set to TRUE to mean that either a NotificationMessage or a keep-alive

Message has been sent on the Subscription. It is a flag that is used to ensure that either a
NotificationMessage or a keep-alive Message is sent out the first time the publishing timer
expires.

NotificationsAvailable

A boolean value that is set to TRUE only when there is at least one Monitoredltem that is in
the reporting mode and that has a Notification queued or there is at least one item to report
whose triggering item has triggered and that has a Notification queued. The transition of this
state Variable from FALSE to TRUE creates the “New Notification Queued” Event in the state
table.

PublishingEnabled

The parameter that requests publishing to be enabled or disabled.

PublishingReqQueued

A boolean value that is set to TRUE only when there is a Publish request Message queued to
the Subscription.

RequestedMessageFound

A boolean value that is set to TRUE only when the Message requested to be retransmitted
was found in the retransmission queue.

SegNum

The value that records the value of the sequence number used in NotificationMessages.

SubscriptionAssignedToSession

A boolean value that is set to TRUE only when the Subscription related Service is called with
the Session the Subscription is assigned to. A Subscription is assigned to the Session that
created it. That assignment can only be changed through successful completion of the
TransferSubscriptions Service.

5.14.1.4 Functions

The action functions are defined alphabetically in Table 87.

OPC 10000-4: Services

81 1.05.04

Table 87 — Functions

Function

Description

ClientValidated()

A boolean function that returns TRUE only when the Client that is submitting a
TransferSubscriptions request is operating on behalf of the same user and supports the same
Profiles as the Client of the previous Session.

CreateNotificationMsg()

Increment the SeqNum and create a NotificationMessage from the Monitoredltems assigned to
the Subscription.

Save the newly-created NotificationMessage in the retransmission queue.

If all available Notifications can be sent in the Publish response, the MoreNotifications state
Variable is set to FALSE. Otherwise, it is set to TRUE.

CreateSubscription()

Attempt to create the Subscription.

DeleteAckedNotificationMsgs()

Delete the NotificationMessages from the retransmission queue that were acknowledged by
the request.

DeleteClientPublReqQueue()

Clear the Publish request queue for the Client that is sending the DeleteSubscriptions request,
if there are no more Subscriptions assigned to that Client.

DeleteMonitoredltems()

Delete all Monitoredltems assigned to the Subscription.

DequeuePublishReq()

De-queue a publishing request in first-in first-out order.

Validate if the publish request is still valid by checking the timeoutHint in the RequestHeader.
If the request timed out, send a Bad_Timeout service result for the request and de-queue
another publish request.

ResetLifetimeCounter()

EngueuePublishingReq()

Enqueue the publishing request.

InitializeSubscription()

ResetLifetimeCounter()

MoreNotifications = FALSE

PublishRateChange = FALSE

PublishingEnabled = value of publishingEnabled parameter in the CreateSubscription request
PublishingReqQueued = FALSE

SegNum =0

SetSession()

StartPublishingTimer()

IssueStatusChangeNotification()

Issue a StatusChangeNotification notificationMessage with a status code for the status change
of the Subscription. The StatusChangeNotification notificationMessage type is defined in
7.25.4. Bad_Timeout status code is used if the lifetime expires and
Good_SubscriptionTransferred is used if the Subscriptions was transferred to another Session.

ResetKeepAliveCounter()

Reset the keep-alive counter to the maximum keep-alive count of the Subscription. The
maximum keep-alive count is set by the Client when the Subscription is created and may be
modified using the ModifySubscription Service.

ResetLifetimeCounter()

Reset the LifetimeCounter Variable to the value specified for the lifetime of a Subscription in
the CreateSubscription Service (5.14.2).

ReturnKeepAlive()

Create an empty NotificationMessage with the current SeqNum value.
ReturnResponse()

ReturnNegativeResponse()

Return a Service response indicating the appropriate Service level error. No parameters are
returned other than the responseHeader that contains the Service level StatusCode.

ReturnNotifications()

CreateNoatificationMsg()
ReturnResponse()
If (MoreNatifications == TRUE) && (PublishingReqQueued == TRUE)
{
DequeuePublishReq()
Loop through this function again

}

ReturnResponse()

Return the appropriate response, setting the appropriate parameter values and StatusCodes
defined for the Service.

SessionChanged()

A boolean function that returns TRUE only when the Session used to send a
TransferSubscriptions request is different from the Client Session currently associated with the
Subscription.

SetPublishingEnabled ()

Set the PublishingEnabled state Variable to the value of the publishingEnabled parameter
received in the request.

SetSession

Set the Session information for the Subscription to match the Session on which the
TransferSubscriptions request was issued.

StartPublishingTimer()

Start or restart the publishing timer and decrement the LifetimeCounter Variable.

UpdateSubscriptionParams()

Negotiate and update the Subscription parameters. If the new keep-alive interval is less than
the current value of the keep-alive counter, perform ResetKeepAliveCounter() and
ResetLifetimeCounter().

5.14.2 CreateSubscription
5.14.2.1 Description

This Service is used to create a Subscription. Subscriptions monitor a set of Monitoreditems for
Notifications and return them to the Client in response to Publish requests.

1.05.04 82 OPC 10000-4: Services

lllegal request values for parameters that can be revised do not generate errors. Instead the Server
will choose default values and indicate them in the corresponding revised parameter.

5.14.2.2 Parameters
Table 88 defines the parameters for the Service.

Table 88 — CreateSubscription Service Parameters

Name Type Description
Request
requestHeader Request Common request parameters (see 7.33 for RequestHeader definition).
Header
requestedPublishing Duration This interval defines the cyclic rate that the Subscription is being requested to
Interval return Notifications to the Client. This interval is expressed in milliseconds. This
interval is represented by the publishing timer in the Subscription state table (see
5.14.1.2).

The negotiated value for this parameter returned in the response is used as the
default sampling interval for Monitoredltems assigned to this Subscription.

If the requested value is O or negative, the Server shall revise with the fastest
supported publishing interval.

requestedLifetimeCount Counter Requested lifetime count (see 7.8 for Counter definition). The lifetime count shall
be a minimum of three times the keep keep-alive count.

When the publishing timer has expired this number of times without a Publish
request being available to send a NotificationMessage, then the Subscription
shall be deleted by the Server.

requestedMaxKeepAlive Counter Requested maximum keep-alive count (see 7.8 for Counter definition). When the

Count publishing timer has expired this number of times without requiring any
NotificationMessage to be sent, the Subscription sends a keep-alive Message to
the Client.

The negotiated value for this parameter is returned in the response.
If the requested value is 0, the Server shall revise with the smallest supported
keep-alive count.
maxNotificationsPerPublish Counter The maximum number of notifications that the Client wishes to receive in a
single Publish response. A value of zero indicates that there is no limit.
The number of notifications per Publish is the sum of monitoreditems in the
DataChangeNotification and events in the EventNotificationList.
publishingEnabled Boolean A Boolean parameter with the following values:

TRUE publishing is enabled for the Subscription.

FALSE publishing is disabled for the Subscription.
The value of this parameter does not affect the value of the monitoring mode
Attribute of Monitoredltems.
priority Byte Indicates the relative priority of the Subscription. When more than one
Subscription needs to send a Publish response, the Server should de-queue a
Publish request to the Subscription with the highest priority number. For
Subscriptions with equal priority the Server should de-queue Publish requests in
a round-robin fashion.
A Client that does not require special priority settings should set this value to

zero.
Response
responseHeader Response Common response parameters (see 7.34 for ResponseHeader definition).
Header
subscriptionld Integerld The Server-assigned identifier for the Subscription (see 7.19 for Integerld

definition). This identifier shall be unique for the entire Server, not just for the
Session, in order to allow the Subscription to be transferred to another Session
using the TransferSubscriptions service.

After Server start-up the generation of subscriptionlds should start from a
random Integerld or continue from the point before the restart.
revisedPublishinginterval Duration The actual publishing interval that the Server will use, expressed in milliseconds.
The Server should attempt to honour the Client request for this parameter, but
may negotiate this value up or down to meet its own constraints.

revisedLifetimeCount Counter The lifetime of the Subscription shall be a minimum of three times the keep-alive
interval negotiated by the Server.
revisedMaxKeepAliveCount Counter The actual maximum keep-alive count (see 7.8 for Counter definition). The

Server should attempt to honour the Client request for this parameter, but may
negotiate this value up or down to meet its own constraints.

OPC 10000-4: Services 83 1.05.04

5.14.2.3 Service results

Table 89 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 89 — CreateSubscription Service Result Codes

Symbolic Id Description
Bad_TooManySubscriptions The Server has reached its maximum number of Subscriptions.

5.14.3 ModifySubscription
5.14.3.1 Description
This Service is used to modify a Subscription.

lllegal request values for parameters that can be revised do not generate errors. Instead the Server
will choose default values and indicate them in the corresponding revised parameter.

Changes to the Subscription settings shall be applied immediately by the Server. They take effect
as soon as practical but not later than twice the new revisedPublishinglnterval.

5.14.3.2 Parameters
Table 90 defines the parameters for the Service.

1.05.04 84 OPC 10000-4: Services

Table 90 — ModifySubscription Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
subscriptionld Integerld The Server-assigned identifier for the Subscription (see 7.19 for
Integerld definition).
requestedPublishinginterval Duration This interval defines the cyclic rate at which the Subscription is being

requested to return Notifications to the Client. This interval is expressed
in milliseconds. This interval is represented by the publishing timer in
the Subscription state table (see 5.14.1.2).

The negotiated value for this parameter returned in the response is
used as the default sampling interval for Monitoredltems assigned to
this Subscription.

If the requested value is O or negative, the Server shall revise with the
fastest supported publishing interval.

requestedLifetimeCount Counter Requested lifetime count (see 7.8 for Counter definition). The lifetime
count shall be a minimum of three times the keep-alive count.

When the publishing timer has expired this number of times without a
Publish request being available to send a NotificationMessage, then the
Subscription shall be deleted by the Server.
requestedMaxKeepAliveCount | Counter Requested maximum keep-alive count (see 7.8 for Counter definition).
When the publishing timer has expired this number of times without
requiring any NotificationMessage to be sent, the Subscription sends a
keep-alive Message to the Client.

The negotiated value for this parameter is returned in the response.

If the requested value is 0, the Server shall revise with the smallest
supported keep-alive count.

maxNotificationsPerPublish Counter The maximum number of notifications that the Client wishes to receive
in a single Publish response. A value of zero indicates that there is no
limit.

priority Byte Indicates the relative priority of the Subscription. When more than one

Subscription needs to send Noatifications, the Server should de-queue a
Publish request to the Subscription with the highest priority number. For
Subscriptions with equal priority the Server should de-queue Publish
requests in a round-robin fashion.

A Client that does not require special priority settings should set this
value to zero.

Response

responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader
definition).

revisedPublishinginterval Duration The actual publishing interval that the Server will use, expressed in
milliseconds. The Server should attempt to honour the Client request
for this parameter, but may negotiate this value up or down to meet its
own constraints.

revisedLifetimeCount Counter The lifetime of the Subscription shall be a minimum of three times the
keep-alive interval negotiated by the Server.

revisedMaxKeepAliveCount Counter The actual maximum keep-alive count (see 7.8 for Counter definition).

The Server should attempt to honour the Client request for this
parameter, but may negotiate this value up or down to meet its own
constraints.

5.14.3.3 Service results

Table 91 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 91 — ModifySubscription Service Result Codes

Symbolic Id Description
Bad_SubscriptionldInvalid See Table 182 for the description of this result code.

5.14.4 SetPublishingMode
5.14.4.1 Description
This Service is used to enable sending of Notifications on one or more Subscriptions.

OPC 10000-4: Services

5.14.4.2 Parameters
Table 92 defines the parameters for the Service.

85 1.05.04

Table 92 — SetPublishingMode Service Parameters

Name Type Description
Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
publishingEnabled Boolean A Boolean parameter with the following values:
TRUE publishing of NotificationMessages is enabled for the Subscription.
FALSE publishing of NotificationMessages is disabled for the Subscription.
The value of this parameter does not affect the value of the monitoring mode
Attribute of Monitoredltems. Setting this value to FALSE does not discontinue the
sending of keep-alive Messages.
subscriptionlds [] Integerld List of Server-assigned identifiers for the Subscriptions to enable or disable (see
7.19 for Integerld definition).
Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).
results [] StatusCode List of StatusCodes for the Subscriptions to enable/disable (see 7.39 for

StatusCode definition). The size and order of the list matches the size and order of
the subscriptionlds request parameter.

diagnosticinfos []

Diagnosticinfo

List of diagnostic information for the Subscriptions to enable/disable (see 7.12 for
Diagnosticlnfo definition). The size and order of the list matches the size and order
of the subscriptionlds request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic information
was encountered in processing of the request.

5.14.4.3 Service re

sults

Table 93 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 93 — SetPublishingMode Service Result Codes

Symbolic Id

Description

Bad_NothingToDo

See Table 182 for the description of this result code.

Bad_TooManyOperations

See Table 182 for the description of this result code.

5.14.4.4 StatusCodes

Table 94 defines values for the results parameter that are specific to this Service. Common
StatusCodes are defined in Table 183.

1.05.04 86 OPC 10000-4: Services

Table 94 — SetPublishingMode Operation Level Result Codes

Symbolic Id Description
Bad_Subscriptionldinvalid See Table 182 for the description of this result code.

5.14.5 Publish
5.14.5.1 Description

This Service is used for two purposes. First, it is used to acknowledge the receipt of
NotificationMessages for one or more Subscriptions. Second, it is used to request the Server to
return a NotificationMessage or a keep-alive Message. Since Publish requests are not directed to a
specific Subscription, they may be used by any Subscription. 5.14.1.2 describes the use of the
Publish Service.

Client strategies for issuing Publish requests may vary depending on the networking delays between
the Client and the Server. In many cases, the Client may wish to issue a Publish request immediately
after creating a Subscription, and thereafter, immediately after receiving a Publish response.

In other cases, especially in high latency networks, the Client may wish to pipeline Publish requests
to ensure cyclic reporting from the Server. Pipelining involves sending more than one Publish
request for each Subscription before receiving a response. For example, if the network introduces
a delay between the Client and the Server of 5 seconds and the publishing interval for a Subscription
is one second, then the Client shall issue Publish requests every second instead of waiting for a
response to be received before sending the next request.

A Server should limit the number of active Publish requests to avoid an infinite number since it is
expected that the Publish requests are queued in the Server. But a Server shall accept more queued
Publish requests than created Subscriptions. It is expected that a Server supports several Publish
requests per Subscription. When a Server receives a new Publish request that exceeds its limit it
shall de-queue the oldest Publish request and return a response with the result set to
Bad_TooManyPublishRequests. If a Client receives this Service result for a Publish request it shall
not issue another Publish request before one of its outstanding Publish requests is returned from
the Server.

Clients can limit the size of Publish responses with the maxNotificationsPerPublish parameter
passed to the CreateSubscription Service. However, this could still result in a message that is too
large for the Client or Server to process. In this situation, the Client will find that either the
SecureChannel goes into a fault state and needs to be re-established or the Publish response
returns an error and calling the Republish Service also returns an error. If either situation occurs
then the Client will adjust its message processing limits or the parameters for the Subscription and/or
Monitoredltems.

The return diagnostic info setting in the request header of the CreateMonitoreditems or the last
ModifyMonitoreditems Service is applied to the Monitored Items and is used as the diagnostic
information settings when sending Notifications in the Publish response.

5.14.5.2 Parameters

Table 95 defines the parameters for the Service.

OPC 10000-4: Services

87 1.05.04

Table 95 — Publish Service Parameters

Name Type

Description

Request

requestHeader RequestHeader

Common request parameters (see 7.33 for RequestHeader definition).

subscription Subscription
Acknowledgements [] Acknowledgement

The list of acknowledgements for one or more Subscriptions. This list may
contain multiple acknowledgements for the same Subscription (multiple entries
with the same subscriptionld). This structure is defined in-line with the
following indented items.

subscriptionld Integerld

The Server assigned identifier for a Subscription (see 7.19 for Integerld
definition).

sequenceNumber Counter

The sequence number being acknowledged (see 7.8 for Counter definition).
The Server may delete the Message with this sequence number from its
retransmission queue.

Response

responseHeader ResponseHeader

Common response parameters (see 7.34 for ResponseHeader definition).

subscriptionld Integerld

The Server-assigned identifier for the Subscription for which Notifications are
being returned (see 7.19 for Integerld definition). The value 0 is used to
indicate that there were no Subscriptions defined for which a response could
be sent.

availableSequence Counter
Numbers []

A list of sequence number ranges that identify unacknowledged
NotificationMessages that are available for retransmission from the
Subscription’s retransmission queue including the sequence number of this
response if it is not a keep-alive Message. This list is prepared after
processing the acknowledgements in the request (see 7.8 for Counter
definition).

The list shall be empty if the Server does not support the retransmission
queue. If the list is empty, the Client should not acknowledge sequence
numbers.

This information is for diagnostic purpose and Clients should log differences to
the expected sequence numbers.

moreNotifications Boolean

A Boolean parameter with the following values:
TRUE the number of Notifications that were ready to be sent could not
be sent in a single response.
FALSE all Notifications that were ready are included in the response.

notificationMessage Notification
Message

The NotificationMessage that contains the list of Notifications. The
NotificationMessage parameter type is specified in 7.26.

results [] StatusCode

List of results for the acknowledgements (see 7.39 for StatusCode definition).
The size and order of the list matches the size and order of the
subscriptionAcknowledgements request parameter.

diagnosticInfos [] Diagnosticlnfo

List of diagnostic information for the acknowledgements (see 7.12 for
Diagnosticlnfo definition). The size and order of the list matches the size and
order of the subscriptionAcknowledgements request parameter. This list is
empty if diagnostics information was not requested in the request header or if
no diagnostic information was encountered in processing of the request.

5.14.5.3 Service results

Table 96 defines the Service results specific to this Service. Common StatusCodes are defined in

Table 182.

Table 96 —

Publish Service Result Codes

Symbolic Id Description

Bad_TooManyPublishRequests | The Server has reached the maximum number of queued Publish requests.

Bad_NoSubscription There is no Subscription available for this session.

5.14.5.4 StatusCodes

Table 97 defines values for the results parameter that are specific to this Service. Common

StatusCodes are defined in Table 183.

1.05.04 88 OPC 10000-4: Services

Table 97 — Publish Operation Level Result Codes

Symbolic Id Description
Bad_Subscriptionldinvalid See Table 182 for the description of this result code.
Bad_SequenceNumberUnknown The sequence number is unknown to the Server.

Good_RetransmissionQueueNotSupported The Server does not support retransmission queue and acknowledgement of
sequence numbers is not available.

5.14.6 Republish
5.14.6.1 Description

This Service requests the Subscription to republish a NotificationMessage from its retransmission
qgueue. If the Server does not have the requested Message in its retransmission queue, it returns
an error response.

See 5.14.1.2 for the detail description of the behaviour of this Service.
See 6.7 for a description of the issues and strategies regarding reconnect handling and Republish.

5.14.6.2 Parameters
Table 98 defines the parameters for the Service.

Table 98 — Republish Service Parameters

Name Type Description

Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
subscriptionld Integerld The Server assigned identifier for the Subscription to be republished (see 7.19

for Integerld definition).

retransmitSequence Counter The sequence number of a specific NotificationMessage to be republished (see
Number 7.8 for Counter definition).

Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).
notificationMessage Notification The requested NotificationMessage. The NotificationMessage parameter type is

Message specified in 7.26.

5.14.6.3 Service results

Table 99 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 99 — Republish Service Result Codes

Symbolic Id Description
Bad_SubscriptionldInvalid See Table 182 for the description of this result code.
Bad_MessageNotAvailable The requested message is no longer available.

5.14.7 TransferSubscriptions
5.14.7.1 Description

This Service is used to transfer a Subscription and its MonitoredIltems from one Session to another.
For example, a Client may need to reopen a Session and then transfer its Subscriptions to that
Session. It may also be used by one Client to take over a Subscription from another Client by
transferring the Subscription to its Session.

The authenticationToken contained in the request header identifies the Session to which the
Subscription and Monitoredltems shall be transferred. The Server shall validate that the Client of
that Session is operating on behalf of the same non-ANONYMOUS ClientUserld. The ClientUserld
is defined in OPC 10000-5. If the Client uses an ANONYMOUS UserTokenType, the Server shall
validate if the ApplicationUri is the same for the old and the new Session and the
MessageSecurityMode is SIGN or SIGNANDENCRYPT. If the Server transfers the Subscription, it
returns the sequence numbers of the NotificationMessages that are available for retransmission.
The Client should acknowledge all Messages in this list for which it will not request retransmission.

OPC 10000-4: Services 89 1.05.04

If the Server transfers the Subscription to the new Session, the Server shall issue a
StatusChangeNotification notificationMessage with the status code Good_SubscriptionTransferred
to the old Session. The StatusChangeNotification notificationMessage type is defined in 7.25.4.

5.14.7.2 Parameters
Table 100 defines the parameters for the Service.

Table 100 — TransferSubscriptions Service Parameters

Name Type Description

Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
subscriptionlds [] Integerld List of identifiers for the Subscriptions to be transferred to the new Client (see

7.19 for Integerld definition). These identifiers are transferred from the primary
Client to a backup Client via external mechanisms.

sendlnitialValues Boolean A Boolean parameter with the following values:

TRUE the first Publish response(s) after the TransferSubscriptions call
shall contain the current value for each data Monitoreditem in the
Subscription where the Monitoring Mode is set to Reporting.

If a value is queued for a data Monitoredltem, the next value in
the queue is sent in the Publish response. If no value is queued
for a data Monitoreditem, the last value sent is repeated in the

Publish response.

FALSE the first Publish response after the TransferSubscriptions call
shall contain only the value changes since the last Publish
response was sent.

This parameter only applies to Monitoredltems used for monitoring Attribute
changes.
The data should be sent in the next regular Publishinglinterval.

Response
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).
results [] TransferResult List of results for the Subscriptions to transfer. The size and order of the list
matches the size and order of the subscriptionlds request parameter. This
structure is defined in-line with the following indented items.
statusCode StatusCode StatusCode for each Subscription to be transferred (see 7.39 for StatusCode
definition).
availableSequence | Counter A list of sequence number ranges that identify NotificationMessages that are in
Numbers [] the Subscription’s retransmission queue. This parameter is null or empty if the
transfer of the Subscription failed. The Counter type is defined in 7.8.
diagnosticinfos [] Diagnosticlnfo List of diagnostic information for the Subscriptions to transfer (see 7.12 for

DiagnosticInfo definition). The size and order of the list matches the size and
order of the subscriptionlds request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic
information was encountered in processing of the request.

5.14.7.3 Service results

Table 101 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 101 — TransferSubscriptions Service Result Codes

Symbolic Id Description
Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.

Bad_InsufficientClientProfile The Client of the current Session does not support one or more Profiles that are necessary for
the Subscription.

5.14.7.4 StatusCodes

Table 102 defines values for the operation level statusCode parameter that are specific to this
Service. Common StatusCodes are defined in Table 183.

1.05.04 90 OPC 10000-4: Services

Table 102 — TransferSubscriptions Operation Level Result Codes

Symbolic Id Description
Bad_Subscriptionldinvalid See Table 182 for the description of this result code.
Bad_UserAccessDenied See Table 182 for the description of this result code.

The Client of the current Session is not operating on behalf of the same user as the Session that
owns the Subscription.
Bad_TooManySubscriptions The Server has reached its maximum number of Subscriptions for the Session.

5.14.8 DeleteSubscriptions
5.14.8.1 Description
This Service is invoked to delete one or more Subscriptions that belong to the Client's Session.

Successful completion of this Service causes all Monitoredltems that use the Subscription to be
deleted. If this is the last Subscription for the Session, then all Publish requests still queued for that
Session are de-queued and shall be returned with Bad_NoSubscription.

Subscriptions that were transferred to another Session shall be deleted by the Client that owns the
Session.

5.14.8.2 Parameters
Table 103 defines the parameters for the Service.

Table 103 — DeleteSubscriptions Service Parameters

Name Type Description

Request
requestHeader RequestHeader Common request parameters (see 7.33 for RequestHeader definition).
subscriptionlds [] Integerld The Server-assigned identifier for the Subscription (see 7.19 for Integerld

definition).

Response
responseHeader ResponseHeader | Common response parameters (see 7.34 for ResponseHeader definition).
results [] StatusCode List of StatusCodes for the Subscriptions to delete (see 7.39 for StatusCode

definition). The size and order of the list matches the size and order of the
subscriptionlds request parameter.

diagnosticinfos [] Diagnosticlnfo List of diagnostic information for the Subscriptions to delete (see 7.12 for
DiagnosticInfo definition). The size and order of the list matches the size and
order of the subscriptionlds request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic
information was encountered in processing of the request.

5.14.8.3 Service results

Table 104 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

Table 104 — DeleteSubscriptions Service Result Codes

Symbolic Id Description
Bad_NothingToDo See Table 182 for the description of this result code.
Bad_TooManyOperations See Table 182 for the description of this result code.

5.14.8.4 StatusCodes

Table 105 defines values for the results parameter that are specific to this Service. Common
StatusCodes are defined in Table 183.

Table 105 — DeleteSubscriptions Operation Level Result Codes

Symbolic Id Description
Bad_SubscriptionldInvalid See Table 182 for the description of this result code.

OPC 10000-4: Services 91 1.05.04

6 Service behaviours

6.1 Security
6.1.1 Overview

The OPC UA Services define a number of mechanisms to meet the security requirements outlined
in OPC 10000-2. This clause describes a number of important security-related procedures that OPC
UA Applications shall follow.

6.1.2 Obtaining and installing an Application Instance Certificate

All OPC UA Applications require an Application Instance Certificate which shall contain the following
information:

e The network name or address of the computer where the application runs;

e The name of the organization that administers or owns the application;

e The name of the application;

e The URI of the application instance;

e The validFrom and validTo date for the Certificate.
Application Instance Certificates issued by a Certificate Authority (CA) shall contain the following
additional information:

o The name of the Certificate Authority that issued the Certificate;

e The public key issued to the application by the Certificate Authority;

o A digital signature created by the Certificate Authority.

Note Self-signed Certificates contain this information but in this case the information is set to itself.

In addition, each Application Instance Certificate has a private key which should be stored in a
location that can only be accessed by the application. If this private key is compromised, the
administrator shall force the creation of a new Application Instance Certificate and private key by
the application.

This Certificate may be generated automatically when the application is installed. In this situation
the private key assigned to the Certificate shall be used to create the Certificate signature.
Certificates created in this way are called self-signed Certificates.

Manual management and replacement before expiry of self-signed Certificates may be appropriate
for a few Clients connected to one Server. In complex communication scenarios a central
management of Certificates based on a Certificate Authority is recommended. This includes initial
roll-out and automatic updates by a CertificateManager defined in OPC 10000-12.

If the administrator responsible for the application decides that a self-signed Certificate does not
meet the security requirements of the organization, then the administrator should install a Certificate
issued by a Certification Authority. The steps involved in requesting an Application Instance
Certificate from a Certificate Authority are shown in Figure 19.

1.05.04 92 OPC 10000-4: Services

Application Administrator Certificate Authority

1. Installs application

» Machine network name or address.
« Organization name.

2. Creates a self-signed certificate.

o

Process completes here if a
self-signed certificate meets
the security requirements

3. Requests certificate.

« Certificate Signing Request
* Machine network name or address.
« Proof of identity as administrator.

4. Issues certificate.

« Public key.
« CAdigital signature.

5. Installs certificate.

« Application certificate with public key.

Figure 19 — Obtaining and installing an Application Instance Certificate

Figure 19 above illustrates the interactions between the application, the Administrator and the
Certificate Authority. The application is a OPC UA Application installed on a single machine. The
Administrator is the person responsible for managing the machine and the OPC UA Application. The
Certificate Authority is an entity that can issue digital Certificates that meet the requirements of the
organization deploying the OPC UA Application.

OPC UA defines interfaces and workflows to register OPC UA Applications with a central discovery
service and to execute the interaction necessary with a CertificateManager to issue the initial
Certificate Authority signed Certificate, The CertificateManager interface includes features to get a
TrustList and also Certificate updates from a central place. The Global Discovery Server (GDS) and
CertificateManager functionality is defined in OPC 10000-12.

If the Administrator decides that a self-signed Certificate meets the security requirements for the
organization, then the Administrator may skip Steps 3 through 5. Application vendors shall ensure
that a Certificate is available after the installation process. Every OPC UA Application shall allow
the Administrators to replace Application Instance Certificates with Certificates that meet their
requirements.

When the Administrator requests a new Certificate from a Certificate Authority, the Certificate
Authority may require that the Administrator provide proof of authorization to request Certificates
for the organization that will own the Certificate. The exact mechanism used to provide this proof
depends on the Certificate Authority.

Vendors should automate the process of acquiring Certificates from an authority using the
CertificateManager defined in OPC 10000-12. If this is the case, the Administrator would still go
through the steps illustrated in Figure 19, however, the installation program for the application would
do them automatically and only prompt the Administrator to provide information about the application
instance being installed.

6.1.3 Determining if a Certificate is trusted

Applications shall never communicate with another application that they do not trust. An Application
decides if another application is trusted by checking whether the Application Instance Certificate for
the other application is trusted. A Certificate is only trusted if its chain can be validated.

Applications shall rely on lists of Certificates provided by the Administrator to determine trust. There
are two separate lists: a list of trusted Certificates and a list of issuer Certificates (i.e. CAs). The list
of trusted Certificates may contain a Certificate issued to another Application or it may be a

OPC 10000-4: Services 93 1.05.04

Certificate belonging to a CA. The list of issuer Certificates contains CA Certificates needed for
chain validation that are not in the list of trusted Certificates.

When building a chain each Certificate in the chain shall be validated back to a CA with a self-signed
Certificate (a.k.a. aroot CA). If any validation error occurs then the trust check fails. Some validation
errors are non-critical which means they can be suppressed by a user of an Application with the
appropriate privileges. Suppressed validation errors are always reported via auditing (i.e. an
appropriate Audit event is raised).

Determining trust requires access to all Certificates in the chain. These Certificates may be stored
locally or they may be provided with the application Certificate. Processing fails with
Bad_SecurityChecksFailed if an element in the chain cannot be found. A Certificate is trusted if the
Certificate or at least one of the Certificates in the chain are in the list of trusted Certificates for the
Application and the chain is valid.

Table 106 specifies the steps used to validate a Certificate in the order that they shall be followed.
These steps are repeated for each Certificate in the chain. Each validation step has a unique error
status and audit event type that shall be reported if the check fails. The audit event is in addition to
any audit event that was generated for the particular Service that was invoked. The Service audit
event in its message text shall include the audit Eventld of the AuditCertificateEventType (for more
details, see 6.5). Processing halts if an error occurs, unless it is non-critical and it has been
suppressed.

ApplicationIinstanceCertificates shall not be used in a Client or Server until they have been evaluated
and marked as trusted. This can happen automatically by a PKI trust chain or in an offline manner
where the Certificate is marked as trusted by an administrator after evaluation.

1.05.04 94 OPC 10000-4: Services

Table 106 — Certificate validation steps

OPC 10000-4: Services 95

1.05.04

Step

Error/AuditEvent

Description

Certificate Structure

Bad_Certificatelnvalid
Bad_SecurityChecksFailed
AuditCertificatelnvalidEventType

The Certificate structure is verified.

This error may not be suppressed.

If this check fails on the Server side, the error
Bad_SecurityChecksFailed shall be reported back to
the Client.

Build Certificate Chain

Bad_CertificateChainincomplete
Bad_SecurityChecksFailed
AuditCertificatelnvalidEventType

The trust chain for the Certificate is created.

An error during the chain creation may not be
suppressed.

If this check fails on the Server side, the error
Bad_SecurityChecksFailed shall be reported back to
the Client.

Signature

Bad_Certificatelnvalid
Bad_SecurityChecksFailed
AuditCertificatelnvalidEventType

A Certificate with an invalid signature shall always be
rejected.

A Certificate signature is invalid if the Issuer Certificate
is unknown. A self-signed Certificate is its own issuer.
If this check fails on the Server side, the error
Bad_SecurityChecksFailed shall be reported back to
the Client.

Security Policy Check

Bad_CertificatePolicyCheckFailed
Bad_SecurityChecksFailed
AuditCertificatelnvalidEventType

A Certificate signature shall comply with the
CertificateSignatureAlgorithm,
MinAsymmetricKeyLength and
MaxAsymmetricKeyLength requirements for the used
SecurityPolicy defined in OPC 10000-7.

If this check fails on the Server side, the error
Bad_SecurityChecksFailed shall be reported back to
the Client.

This error may be suppressed.

Trust List Check

Bad_CertificateUntrusted
Bad_SecurityChecksFailed
AuditCertificateUntrustedEventType

If the Application Instance Certificate is not trusted and
none of the CA Certificates in the chain is trusted, the
result of the Certificate validation shall be
Bad_CertificateUntrusted.

If this check fails on the Server side, the error
Bad_SecurityChecksFailed shall be reported back to
the Client.

Validity Period

Bad_CertificateTimelnvalid
Bad_CertificatelssuerTimelnvalid
AuditCertificateExpiredEventType

The current time shall be after the start of the validity
period and before the end.
This error may be suppressed.

Host Name

Bad_CertificateHostNamelnvalid
AuditCertificateDataMismatchEventType

The HostName in the URL used to connect to the
Server shall be the same as one of the HostNames
specified in the Certificate.

This check is skipped for CA Certificates.

This check is skipped for Server side validation.
This error may be suppressed.

URI

Bad_CertificateUrilnvalid
AuditCertificateDataMismatchEventType

Application and Software Certificates contain an
application or product URI that shall match the URI
specified in the ApplicationDescription provided with
the Certificate.

This check is skipped for CA Certificates.

This error may not be suppressed.

The gatewayServerUri is used to validate an
Application Certificate when connecting to a Gateway
Server (see 7.2).

Certificate Usage

Bad_CertificateUseNotAllowed
Bad_CertificatelssuerUseNotAllowed
AuditCertificateMismatchEventType

Each Certificate has a set of uses for the Certificate
(see OPC 10000-6). These uses shall match use
requested for the Certificate (i.e. Application, Software
or CA).

This error may be suppressed unless the Certificate
indicates that the usage is mandatory.

Find Revocation List

Bad_CertificateRevocationUnknown
Bad_CertificatelssuerRevocationUnknown
AuditCertificateRevokedEventType

Each CA Certificate may have a revocation list. This
check fails if this list is not available (i.e. a network
interruption prevents the application from accessing the
list). No error is reported if the Administrator disables
revocation checks for a CA Certificate.

This error may be suppressed.
Bad_SecurityChecksFailed should be reported back to
the Client.

Revocation Check

Bad_CertificateRevoked
Bad_CertificatelssuerRevoked
AuditCertificateRevokedEventType

The Certificate has been revoked and may not be
used.

This error may not be suppressed.

If this check fails on the Server side, the error
Bad_SecurityChecksFailed shall be reported back to
the Client.

1.05.04 96 OPC 10000-4: Services

Certificates are usually placed in a central location called a CertificateStore. Figure 20 illustrates
the interactions between the Application, the Administrator and the CertificateStore. The
CertificateStore could be on the local machine or in some central server. The exact mechanisms
used to access the CertificateStore depend on the application and PKI environment set up by the
Administrator.

Administrator Application Certificate Store

1. Configures application

« Certificate validation policies.

« Location of CA certificates.

« Location of Certificate Revocation List.
« Location of Certificate Trust List.

Remote
Application

- 2. Provides Instance Certificate . -
3. Find Issuer Certificate

« Validates Issuer Certificate.
* Validates Certificates in Trust Chain.
* Validates Instance Certificate.

4. Find Certificate Revocation List(s)

» Check Instance Certificate.
* Check Issuer Certificate.

5. Find Certificate Trust List

* Find Instance Certificate
or
* Find Issuer Certificate
or
6. Accept Instance Certificate. * Find any Certificate in Trust Chain.

Figure 20 — Determining if an Application Instance Certificate is trusted

6.1.4 Creating a SecureChannel

All OPC UA Applications shall establish a SecureChannel before creating a Session. This
SecureChannel requires that both applications have access to Certificates that can be used to
encrypt and sign Messages exchange. The Application Instance Certificates installed by following
the process described in 6.1.2 may be used for this purpose.

The steps involved in establishing a SecureChannel are shown in Figure 21.

OPC 10000-4: Services 97 1.05.04

Client Server Certificate Authority

1. GetEndpoints Request

« Not required if client is preconfigured
with knowledge of server policies.

2. GetEndpoints Response

« Server certificate
» Message security mode
* Security policy

* User identity token policies 3. Validate Server Certificate

« CA Signature
4. OpenSecureChannel Request + ValidFrom and ValidTo date
— « CArevocation list.
« Client certificate
« Client nonce
« Signed with client’s private key 5. Validate Client Certificate

« Encrypted with server’s public ke
v Y « CA Signature

« ValidFrom and ValidTo date
« CArevocation list.

6. OpenSecureChannel Response

« Server nonce

* Security token

« Token lifetime

« Signed with server’s private key
« Encrypted with client’s public key

7. Renew Security Token

Figure 21 — Establishing a SecureChannel

Figure 21 assumes Client and Server have online access to a CertificateAuthority (CA). If online
access is not available and if the administrator has installed the CA public key on the local machine,
then the Client and Server shall still validate the application Certificates using that key. The figure
shows only one CA, however, there is no requirement that the Client and Server Certificates be
issued by the same authority. A self-signed Application Instance Certificate does not need to be
verified with a CA. Any Certificate shall be rejected if it is not in a TrustList provided by the
administrator.

Both the Client and Server shall have a list of Certificates that they have been configured to trust
(sometimes called the Certificate Trust List or CTL). These trusted Certificates may be Certificates
for Certificate Authorities or they may be OPC UA Application Instance Certificates. OPC UA
Applications shall be configured to reject connections with applications that do not have a trusted
Certificate.

Certificates can be compromised, which means they should no longer be trusted. Administrators
can revoke a Certificate by removing it from the TrustList for all applications or the CA can add the
Certificate to the Certificate Revocation List (CRL) for the Issuer Certificate. Administrators may
save a local copy of the CRL for each Issuer Certificate when online access is not available.

A Client does not need to call GetEndpoints each time it connects to the Server. This information
should change rarely and the Client can cache it locally. If the Server rejects the
OpenSecureChannel request the Client should call GetEndpoints and make sure the Server
configuration has not changed.

There are two security risks which a Client shall be aware of when using the GetEndpoints Service.
The first could come from a rogue Discovery Server that tries to direct the Client to a rogue Server.
For this reason the Client shall verify that the ServerCertificate in the EndpointDescription is a
trusted Certificate before it calls CreateSession.

The second security risk comes from a third party that alters the contents of the
EndpointDescriptions as they are transferred over the network back to the Client. The Client protects
itself against this by comparing the list of EndpointDescriptions returned from the GetEndpoints
Service with list returned in the CreateSession response.

The exact mechanisms for using the SecurityToken to sign and encrypt Messages exchanged over
the SecureChannel are described in OPC 10000-6. The process for renewing tokens is also
described in detail in OPC 10000-6.

1.05.04 98 OPC 10000-4: Services

In many cases, the Certificates used to establish the SecureChannel will be the Application Instance
Certificates. However, some Communication Stacks might not support Certificates that are specific
to a single application. Instead, they expect all communication to be secured with a Certificate
specific to a user or the entire machine. For this reason, OPC UA Applications will need to exchange
their Application Instance Certificates when creating a Session.

6.1.5 Creating a Session

Once an OPC UA Client has established a SecureChannel with a Server it can create an OPC UA
Session.

The steps involved in establishing a Session are shown in Figure 22.

Client Server Certificate Authority Identity Provider

1. CreateSession Request

« Client instance certificate

« Client nonce . " -
2. Validate Client Certificate

3. CreateSession Response
« Session AuthenticationToken
« Server instance certificate
« Server certificate signature
« Server software certificates
« Server nonce 4. Validate Server Certificate

5. ActivateSession Request

« Client software certificates
« Client certificate signature
* User identity token

« User identity token signature 6. Validate User Identity Token

7. ActivateSession Response

« Server nonce

Figure 22 — Establishing a Session

Figure 22 illustrates the interactions between a Client, a Server, a Certificate Authority (CA) and an
identity provider. The CA is responsible for issuing the Application Instance Certificates. If the Client
or Server does not have online access to the CA, then they shall validate the Application Instance
Certificates using the CA public key that the administrator shall install on the local machine.

The identity provider may be a central database that can verify that user token provided by the
Client. This identity provider may also tell the Server which access rights the user has. The identity
provider depends on the user identity token. It could be a Certificate Authority, an Authorization
Service or a proprietary database of some sort.

The Client and Server shall prove possession of their Application Instance Certificates by signing
the Certificates with a nonce appended. The exact mechanism used to create the proof of
possession signatures is described in 5.7.2. Similarly, the Client shall prove possession by either
providing a secret like a password in the user identity token or by creating a signature with the
secret associated with a user identity token like X.509 v3.

6.1.6 Impersonating a User
Once an OPC UA Client has established a Session with a Server it can change the user identity
associated with the Session by calling the ActivateSession service.

The steps involved in impersonating a user are shown in Figure 23. The access of the Server to the
identity provider is Server-internal and it may be just an access to an internal user database.

OPC 10000-4: Services 99 1.05.04

Client Server Identity Provider

1. ActivateSession Request

A4

* Client certificate signature
* User identity token

* User identity token signature 2. Validate User Identity Token

3. ActivateSession Response

* Server nonce

Figure 23 — Impersonating a User

6.1.7 Continuous security checks

ApplicationIinstanceCertificates or UserldentityTokens may expire, get invalid or may be rejected on
Client or Server side.

ApplicationinstanceCertificates verification shall be executed every time the SecurityToken is
renewed for a SecureChannel. OPC UA Applications may do additional verifications between
SecurityToken renews e.g. if the TrustList is updated from a GDS.

If the SecureChannel does not use ApplicationinstanceCertificates, the OPC UA Application should
execute ApplicationinstanceCertificate checks for the Session at a rate used for SecureChannel
renewals.

The recovery mechanisms for ApplicationinstanceCertificate replacement scenarios are described
in 6.7.

OPC UA Application should have internal notification mechanisms to get informed about removal of
user identities or should frequently check if the UserldentityTokens is still valid or if the authorization
for a UserldentityTokens was changed.

6.2 Authorization Services
6.2.1 Overview

Authorization Services provide Access Tokens to Clients on behalf of Users that they pass to a
Server to be granted access to resources.

In a basic model (as shown in Figure 22) the Server is responsible for authorization (i.e. deciding
what a user can do) while a separate identity provider (e.g. the operating system) is responsible for
authentication (deciding who the user is).

In more complex models, the Server relies on external Authorization Services to provide some of its
authorization requirements. These Authorization Services act in concert with an external identity
provider which validates the user credentials before the external Authorization Service creates an
Access Token that tells the Server what the user is a allowed to do. The Client interactions with
these services may be indirect as shown in 6.2.2 or direct as shown in 6.2.3.

Even when the Server requires the Client to use an external Authorization Service the Server is still
responsible for managing and enforcing the Permissions assigned to Nodes in its Address Space.
The clauses below discuss the use of an external Authorization Service in more detail.

6.2.2 Indirect handshake with an Identity Provider

Authorization Services (AS) provide access to identity providers which can validate the credentials
provided by Clients. They then provide tokens which can be passed to a Server instead of the
credentials. These tokens are passed as an IssuedldentityToken defined in 7.41.6.

1.05.04 100 OPC 10000-4: Services

The protocol to request tokens depends on the Authorization Service (AS). Common protocols
include OAuth2 and OPC UA. OAuth2 supports claims based authorization as described in OPC

10000-2.

Servers publish the Authorization Services (AS) they support in the UserTokenPolicies list return
with GetEndpoints. The IssuedTokenType field specifies the protocol used to communicate with the
AS. The IssuerEndpointUrl field contains the information needed by the Client to connect to the AS

using the protocol required by the AS.

The basic handshake is shown in Figure 24.

Client Authorization Identity Server
Service (AS) Provider
GetEndpoints |
Endpoints with UserTokenPolicies-—+--
Request Token———P»!
Verify Credentials—
fffffffff Validation Result--------+
ffffffffffff Access Token-----------1
CreateSession |
AcFivateSession with Access Token | -

Figure 24 — Indirect handshake with an Identity Provider

6.2.3 Direct handshake with an Identity Provider

Authorization Services require that Servers be registered with them because the Access Tokens
can only be used with a single Server. This can introduce a lot of complexity for administrators. One
way to reduce this complexity is to leverage the Server information that is already managed by a
Global Discovery Service (GDS) described in OPC 10000-12. In this model the user identities are
still managed by a central Authorization Service. The interactions are shown in Figure 25.

OPC 10000-4: Services 101 1.05.04

Client Server Authorization Identity
Service (AS) Provider
GetEndpoints———— P
ffffff Endpoints with UserTokenPolicies----+
Request Token with User Identity >
< Identity Token-----

———Request Token with Identity Token————p»

fffff Access Token

CreateSessiongﬂ

—ActivateSession with Access Token*ﬁ

Figure 25 — Direct handshake with an Identity Provider

The UserTokenPolicy returned from the Server provides the URL of the Authorization Service and
the identity provider. If the Application Authorization Service is linked with the GDS, it knows of all
Servers which have been issued Certificates. The ApplicationUri is used as the identifier for the
Server passed to the AS. The identity provider is responsible for managing users known to the
system. It validates the credentials provided by the Client and returns an ldentity Access Token
which identifies the user. The Identity Access Token is passed to the Application Authorization
Service which validates the Client and Server applications and creates a new Access Token that
can be used to access the Server.

6.3 Session-less Service invocation
6.3.1 Description

The Session-less Service invocation is introduced for Services, such as Read, Write or Call, that do
not require any caller specific state information. It is accessible through the Sessionlessinvoke
Service which provides the context information required to call Services without a Session.

Session-less invocation is limited to Services of the View Service Set (with exception of
RegisterNodes and UnregisterNodes), Attribute Service Set, Method Service Set, NodeManagement
Service Set and Query Service Set. If Session-less Service invocation is supported by a Server, all
Services belonging to these Service Sets that are supported by a Server via a Session shall also be
supported via the Sessionlessinvoke Service.

Session-less Services are invoked via a SecureChannel using the Access Token returned from the
Authorization Service as the authenticationToken in the requestHeader. The SecureChannel shall
have encryption enabled to prevent eavesdroppers from seeing the Access Token. The Access
Token provides the user authentication. If application authentication through the SecureChannel is
sufficient, Servers may not require the Access Token and assume an anonymous user. In this case
the authenticationToken shall be null.

The Sessionlessinvoke Messages are just an envelope for the Service to invoke and do not have a
RequestHeader and ResponseHeader like other Services. Those parameters are already part of the
body which contains the Message for the Service to invoke.

Any Endpoint used for normal communication could be used for Session-less invocation provided
the Endpoint supports encryption. The Server returns Bad_ServiceUnsupported if it does not support
Session-less invocation for the request specified in the body. If it supports invocation but not with
the combination of Endpoint and security settings used it returns Bad_SecurityModelnsufficient.

1.05.04 102 OPC 10000-4: Services

Servers may expose Endpoints which are only for use with Session-less invocation. These
Endpoints shall support GetEndpoints and FindServers in addition to the Sessionlessinvoke Service.
The Server returns Bad_ServiceUnsupported for the other Services.

A Session ensures that a namespace index or a server index does not change during the lifetime of
a Session. This cannot be ensured between Session-less Services invocations. There are two
options to ensure the namespace indices in the call match the expected namespace URIs in the
Server. One option for the caller is to provide the list of namespace URIs used to build the
namespace indices. This works best for single Session-less Service invocations. The second option
is to provide the UrisVersion to ensure consistency of namespace arrays between Client and Server.
The UrisVersion is first read from the Server together with the NamespaceArray and ServerArray.
This reduces the overhead per call for a sequence of Session-less Service invocations.

6.3.2 Parameters
Table 107 defines the parameters for the Service.

Table 107 — Sessionlessinvoke Service Parameters

Name Type Description
Request
urisVersion VersionTime The version of the NamespaceArray and the ServerArray used for the Service

invocation. The version shall match the value of the UrisVersion Property that
defines the version for the URI lists in the NamespaceArray and the ServerArray
Properties defined in OPC 10000-5. If the urisVersion parameter does not match
the Server's UrisVersion Property, the Server shall return Bad_VersionTimelnvalid.
In this case the Client shall read the UrisVersion, NamespaceArray and the
ServerArray from the Server Object to repeat the Service invocation with the right
version. The VersionTime DataType is defined in 7.44.

If the value is 0, the parameter is ignored and the URIs are defined by the
namespaceUris and serverUris parameters in request and response.

If the value is non-zero, the namespaceUris and serverUris parameters in the
request are ignored by the Server and set to null or empty arrays in the response.
namespaceUris [] | String A list of URIs referenced by Nodelds or QualifiedNames in the request.
Namespacelndex 0 shall not be in this list.

The first entry in this list is Namespacelndex 1.

The parameter shall be ignored by the Server if the urisVersion is not 0.
serverUris [] String A list of URIs referenced by ExpandedNodelds in the request.

Serverindex 0 shall not be in this list.

The first entry in this list is Serverindex 1.

The parameter shall be ignored by the Server if the urisVersion is not 0.

localelds [] Localeld List of locale ids to use. See locale negotiation in 5.4 which applies to this Service.

serviceld Uint32 The numeric identifier assigned to the Service request DataType Nodeld describing
the body.

body * The body of the request.

The body is an embedded structure containing the corresponding Service request
for the serviceld.

Response
namespaceUris [] | String A list of URIs referenced by Nodelds or QualifiedNames in the response.

Namespacelndex 0 shall not be in this list.

The first entry in this list is Namespacelndex 1.

An empty array shall be returned if the urisVersion is not 0.

serverUris [] String A list of URIs referenced by ExpandedNodelds in the response.

Serverlndex 0 shall not be in this list.

The first entry in this list is Serverindex 1.

An empty array shall be returned if the urisVersion is not 0.

serviceld UiInt32 The numeric identifier assigned to the Service response DataType Nodeld
describing the body.
body * The body of the response.

The body is an embedded structure containing the corresponding Service response
for the serviceld.

6.3.3 Service results

Table 108 defines the Service results specific to this Service. Common StatusCodes are defined in
Table 182.

OPC 10000-4: Services 103 1.05.04

Table 108 — Sessionlessinvoke Service Result Codes

Symbolic Id Description
Bad_VersionTimelnvalid The provided version time is no longer valid.

6.4 Software Certificates

Note Details on SoftwareCertificates will be defined in a future version of this document.

6.5 Auditing
6.5.1 Overview

Auditing is a requirement in many systems. It provides a means of tracking activities that occur as
part of normal operation of the system. It also provides a means of tracking abnormal behaviour. It
is also a requirement from a security standpoint. For more information on the security aspects of
auditing, see OPC 10000-2. Subclause 6.5 describes what is expected of an OPC UA Server and
Client with respect to auditing and it details the audit requirements for each service set. Auditing
can be accomplished using one or both of the following methods:

a) The OPC UA Application that generates the audit event can log the audit entry in a log file or
other storage location;

b) The OPC UA Server that generates the audit event can publish the audit event using the OPC
UA event mechanism. This allows an external OPC UA Client to subscribe to and log the audit
entries to a log file or other storage location.

6.5.2 General audit logs

Each OPC UA Service request contains a string parameter that is used to carry an audit record id.
A Client or any Server operating as a Client, such as an aggregating Server, can create a local audit
log entry for a request that it submits. This parameter allows this Client to pass the identifier for this
entry with the request. If this Server also maintains an audit log, it should include this id in its audit
log entry that it writes. When this log is examined and that entry is found, the examiner will be able
to relate it directly to the audit log entry created by the Client. This capability allows for traceability
across audit logs within a system.

6.5.3 General audit Events

A Server that maintains an audit log shall provide the audit log entries via Event Messages. The
AuditEventType and its sub-types are defined in OPC 10000-3. An audit Event Message also
includes the audit record Id. The details of the AuditEventType and its subtypes are defined in OPC
10000-5. A Server that is an aggregating Server that supports auditing shall also subscribe for audit
events for all of the Servers that it is aggregating (assuming they provide auditing). The combined
stream should be available from the aggregating Server.

6.5.4 Auditing for Discovery Service Set

This Service Set can be separated into two groups: Services that are called by OPC UA Clients and
Services that are invoked by OPC UA Servers. The FindServers and GetEndpoints Services that
are called by OPC UA Clients may generate audit entries for failed Service invocations. The
RegisterServer Service that is invoked by OPC UA Servers shall generate audit entries for all new
registrations and for failed Service invocations. These audit entries shall include the Server URI,
Server names, Discovery URIs and isOnline status. Audit entries should not be generated for
RegisterServer invocation that does not cause changes to the registered Servers.

6.5.5 Auditing for SecureChannel Service Set

All Services in this Service Set for Servers that support auditing may generate audit entries and
shall generate audit Events for failed service invocations and for successful invocation of the
OpenSecureChannel and CloseSecureChannel Services. The Client generated audit entries should
be setup prior to the actual call, allowing the correct audit record Id to be provided. The
OpenSecureChannel Service shall generate an audit Event of type
AuditOpenSecureChannelEventType or a subtype of it for the requestType ISSUE. Audit Events for
the requestType RENEW are only created if the renew fails. The CloseSecureChannel service shall
generate an audit Event of type AuditChannelEventType or a subtype of it. Both of these Event
types are subtypes of the AuditChannelEventType. See OPC 10000-5 for the detailed assignment

1.05.04 104 OPC 10000-4: Services

of the SourceNode, the SourceName and additional parameters. For the failure cases the Message
for Events of this type should include a description of why the service failed. This description should
be more detailed than what was returned to the Client. From a security point of view a Client only
needs to know that it failed, but from an Auditing point of view the exact details of the failure need
to be known.

In the case of Certificate validation errors the CertificateErrorEventld of the
AuditOpenSecureChannelEventType should include the audit Eventld of the specific
AuditCertificateEventType that was generated to report the Certificate error. The
AuditCertificateEventType shall also contain the detailed Certificate validation error. The additional
parameters should include the details of the request. It is understood that these events may be
generated by the underlying Communication Stacks in many cases, but they shall be made available
to the Server and the Server shall report them.

6.5.6 Auditing for Session Service Set

All Services in this Service Set for Servers that support auditing may generate audit entries and
shall generate audit Events for both successful and failed Service invocations. These Services shall
generate an audit Event of type AuditSessionEventType or a subtype of it. In particular, they shall
generate the base EventType or the appropriate subtype, depending on the service that was
invoked. The CreateSession service shall generate AuditCreateSessionEventType events or sub-
types of it. The ActivateSession service shall generate AuditActivateSessionEventType events or
subtypes of it. When the ActivateSession Service is called to change the user identity then the
Server shall generate AuditActivateSessionEventType events or subtypes of it. The CloseSession
service shall generate AuditSessionEventType events or subtypes of it. It shall always be generated
if a Session is terminated like Session timeout expiration or Server shutdown. The SourceName for
Events of this type shall be “Session/Timeout” for a Session timeout, “Session/CloseSession” for a
CloseSession Service call and “Session/Terminated” for all other cases. See OPC 10000-5 for the
detailed assignment of the SourceNode, the SourceName and additional parameters. For the failure
case the Message for Events of this type should include a description of why the Service failed. The
additional parameters should include the details of the request.

This Service Set shall also generate additional audit events in the cases when Certificate validation
errors occur. These audit Events are generated in addition to the AuditSessionEventType Events.
See OPC 10000-3 for the definition of AuditCertificateEventType and its subtypes.

For Clients, that support auditing, accessing the services in the Session Service Set shall generate
audit entries for both successful and failed invocations of the Service. These audit entries should
be setup prior to the actual Service invocation, allowing the invocation to contain the correct audit
record id.

6.5.7 Auditing for NodeManagement Service Set

All Services in this Service Set for Servers that support auditing may generate audit entries and
shall generate audit Events for both successful and failed Service invocations. These Services shall
generate an audit Event of type AuditNodeManagementEventType or subtypes of it. See OPC
10000-5 for the detailed assignment of the SourceNode, the SourceName and additional
parameters. For the failure case, the Message for Events of this type should include a description
of why the service failed. The additional parameters should include the details of the request.

For Clients that support auditing, accessing the Services in the NodeManagement Service Set shall
generate audit entries for both successful and failed invocations of the Service. All audit entries
should be setup prior to the actual Service invocation, allowing the invocation to contain the correct
audit record id.

6.5.8 Auditing for Attribute Service Set

The Write or HistoryUpdate Services in this Service Set for Servers that support auditing may
generate audit entries and shall generate audit Events for both successful and failed Service
invocations. These Services shall generate an audit Event of type AuditUpdateEventType or
subtypes of it. In particular, the Write Service shall generate an audit event of type
AuditWriteUpdateEventType or a subtype of it. The HistoryUpdate Service shall generate an audit
Event of type AuditHistoryUpdateEventType or a subtype of it. Three subtypes of
AuditHistoryUpdateEventType are defined as AuditHistoryEventUpdateEventType,

OPC 10000-4: Services 105 1.05.04

AuditHistoryValueUpdateEventType and AuditHistoryDeleteEventType. The subtype depends on
the type of operation being performed, historical event update, historical data value update or a
historical delete. See OPC 10000-5 for the detailed assignment of the SourceNode, the SourceName
and additional parameters. For the failure case the Message for Events of this type should include
a description of why the Service failed. The additional parameters should include the details of the
request.

The Read and HistoryRead Services may generate audit entries and audit Events for failed Service
invocations. These Services should generate an audit Event of type AuditEventType or a subtype
of it. See OPC 10000-5 for the detailed assignment of the SourceNode, SourceName and additional
parameters. The Message for Events of this type should include a description of why the Service
failed.

For Clients that support auditing, accessing the Write or HistoryUpdate services in the Attribute
Service Set shall generate audit entries for both successful and failed invocations of the Service.
Invocations of the other Services in this Service Set may generate audit entries. All audit entries
should be setup prior to the actual Service invocation, allowing the invocation to contain the correct
audit record id.

6.5.9 Auditing for Method Service Set

All Services in this Service Set for Servers that support auditing may generate audit entries and
shall generate audit Events for both successful and failed service invocations if the invocation
modifies the AddressSpace, writes a value or modifies the state of the system (alarm acknowledge,
batch sequencing or other system changes). These method calls shall generate an audit Event of
type AuditUpdateMethodEventType or subtypes of it. Methods that do not modify the AddressSpace,
write values or modify the state of the system may generate events. See OPC 10000-5 for the
detailed assignment of the SourceNode, SourceName and additional parameters.

For Clients that support auditing, accessing the Method Service Set shall generate audit entries for
both successful and failed invocations of the Service, if the invocation modifies the AddressSpace,
writes a value or modifies the state of the system (alarm acknowledge, batch sequencing or other
system changes). Invocations of the other Methods may generate audit entries. All audit entries
should be setup prior to the actual Service invocation, allowing the invocation to contain the correct
audit record id.

6.5.10 Auditing for View, Query, Monitoredltem and Subscription Service Set

All of the Services in these four Service Sets only provide the Client with information, with the
exception of the TransferSubscriptions Service in the Subscription Service Set. In general, these
services will not generate audit entries or audit Event Messages. The TransferSubscriptions Service
shall generate an audit Event of type AuditSessionEventType or subtypes of it for both successful
and failed Service invocations. See OPC 10000-5 for the detailed assignment of the SourceNode,
the SourceName and additional parameters. For the failure case, the Message for Events of this
type should include a description of why the service failed.

For Clients that support auditing, accessing the TransferSubscriptions Service in the Subscription
Service Set shall generate audit entries for both successful and failed invocations of the Service.
Invocations of the other Services in this Service Set do not require audit entries. All audit entries
should be setup prior to the actual Service invocation, allowing the invocation to contain the correct
audit record id.

6.6 Redundancy
6.6.1 Redundancy overview

OPC UA enables Servers, Clients and networks to be redundant. OPC UA provides the data
structures and Services by which Redundancy may be achieved in a standardized manner.

Server Redundancy allows Clients to have multiple sources from which to obtain the same data.
Server Redundancy can be achieved in multiple manners, some of which require Client interaction,
others that require no interaction from a Client. Redundant Servers could exist in systems without
redundant networks or Clients. Redundant Servers could also coexist in systems with network and
Client Redundancy. Server Redundancy is formally defined in 6.6.2.

1.05.04 106 OPC 10000-4: Services

Client Redundancy allows identically configured Clients to behave as if they were single Clients, but
not all Clients are obtaining data at a given time. Ideally there should be no loss of information when
a Client Failover occurs. Redundant Clients could exist in systems without redundant networks or
Servers. Redundant Clients could also coexist in systems with network and Server Redundancy.
Client Redundancy is formally defined in 6.6.3.

Network Redundancy allows a Client and Server to have multiple communication paths to obtain the
same data. Redundant networks could exist in systems without redundant Servers or Clients.
Redundant networks could also coexist in systems with Client and Server Redundancy. Network
Redundancy is formally defined in 6.6.4.

6.6.2 Server Redundancy
6.6.2.1 General
There are two general modes of Server Redundancy, transparent and non-transparent.

In transparent Redundancy the Failover of Server responsibilities from one Server to another is
transparent to the Client. The Client is unaware that a Failover has occurred and the Client has no
control over the Failover behaviour. Furthermore, the Client does not need to perform any actions
to continue to send or receive data.

In non-transparent Redundancy the Failover from one Server to another and actions to continue to
send or receive data are performed by the Client. The Client shall be aware of the
RedundantServerSet and shall perform the required actions to benefit from the Server Redundancy.

The ServerRedundancy Object defined in OPC 10000-5 indicates the mode supported by the Server.
The ServerRedundancyType ObjectType and its subtypes TransparentRedundancyType and
NonTransparentRedundancyType defined in OPC 10000-5 specify information for the supported
Redundancy mode.

6.6.2.2 RedundantServerSet Requirements

OPC UA Servers that are part of a RedundantServerSet have certain AddressSpace requirements.
These requirements allow a Client to consistently access information from Servers in a
RedundantServerSet and to make intelligent choices related to the health and availability of Servers
in the RedundantServerSet.

Servers in the RedundantServerSet shall have an identical AddressSpace including:
e identical Nodelds
e identical browse paths and structure of the AddressSpace
e identical logic for setting the ServiceLevel

The only Nodes that can differ between Servers in a RedundantServerSet are the Nodes that are in
the local Server namespace like the Server diagnostic Nodes. A Client that fails over shall not be
required to translate browse paths or otherwise resolve Nodelds. Servers are allowed to add and
delete Nodes as long as all Servers in the RedundantServerSet will be updated with the same Node
changes.

All Servers in a RedundantServerSet shall be synchronized with respect to time. This may mean
installing a NTP service or a PTP service.

OPC 10000-4: Services 107 1.05.04

There are other important considerations for a redundant system regarding synchronization:

. Eventlds: Each UA Server in a Transparent (6.6.2.3) and HotAndMirrored
(6.6.2.4.5.5) RedundantServerSet shall synchronize Eventlds to
prevent a Client from mistakenly processing the same event
multiple times simply because the Eventlds are different. This is
very important for Alarms & Conditions. For Cold, Warm, and Hot
RedundantServerSets Clients shall be able to handle Eventlds
that are not synchronized. Following any Failover the Client shall
call ConditionRefresh defined in OPC 10000-9.

. Timestamp (Source/Server): If a Server is exposing data from a downstream device (PLC,
DCS etc.) then the SourceTimestamp and ServerTimestamp
reported by all redundant Servers should match as closely as
possible. Clients should favour the use of the SourceTimestamp.

. ContinuationPoints: Behaviour of continuation points does not change, in that Clients
shall be prepared for lost continuation points. Servers in
Transparent and HotAndMirrored Redundancy sets shall
synchronize continuation points and they may do so in other
modes.

6.6.2.3 Transparent Redundancy

6.6.2.3.1.1 Client behaviour

To a Client the transparent RedundantServerSet appears as if it is just a single Server and the Client
has no Failover actions to perform. All Servers in the RedundantServerSet have an identical
ServerUri and an identical EndpointUrl.

Figure 26 shows a typical transparent Redundancy setup.

Server 1

/ Client and process info

1

Client Shared :
Server URI and | Transparent Redundant Set

Endpoint URL

1

\ Server 2

Client and process info

A 4

Figure 26 — Transparent Redundancy setup example

For transparent Redundancy, OPC UA provides data structures to allow Clients to identify which
Servers are in the RedundantServerSet, the ServiceLevel of each Server, and which Server is
currently responsible for the Client Session. This information is specified in
TransparentRedundancyType ObjectType defined in OPC 10000-5. Since the ServerUri is identical
for all Servers in the RedundantServerSet, the Servers are identified with a Serverld contained in
the information provided in the TransparentRedundancyType Object.

In transparent Redundancy, a Client is not able to control which physical Server it actually connects
to. Failover is controlled by the RedundantServerSet and a Client is also not able to actively Failover
to another Server in the RedundantServerSet.

6.6.2.3.1.2 Server requirements

All OPC UA interactions within a given Session shall be supported by one Server and the Client is
able to identify which Server that is, allowing a complete audit trail for the data. It is the responsibility

1.05.04 108 OPC 10000-4: Services

of the Servers to ensure that information is synchronized between the Servers. A functional Server
will take over the Session and Subscriptions from the Failed Server. Failover may require a
reconnection of the Client’s SecureChannel but the EndpointUrl of the Server and the ServerUri
shall not change. The Client shall be able to continue communication with the Sessions and
Subscriptions created on the previously used Server.

Figure 26 provides an abstract view of a transparent RedundantServerSet. The two or more Servers
in the RedundantServerSet share a virtual network address and therefore all Servers have the
identical EndpointUrl. This includes all other EndpointDescriptions content like identical Certificates
and security settings. How this virtual network address is created and managed is vendor specific.
There may be special hardware that mediates the network address displayed to the rest of the
network. There may be custom hardware, where all components are redundant and Failover at a
hardware level automatically. There may even be software based systems where all the
transparency is governed completely by software.

6.6.2.4 Non-transparent Redundancy

6.6.2.4.1 Overview

For non-transparent Redundancy, OPC UA provides the data structures to allow the Client to identify
what Servers are available in the RedundantServerSet and also Server information which tells the
Client what modes of Failover the Server supports. This information allows the Client to determine
what actions it may need to take in order to accomplish Failover. This information is specified in
NonTransparentRedundancyType ObjectType defined in OPC 10000-5.

The Servers in the non-transparent RedundantServerSet shall use the ServerCapability NTRS
defined in OPC 10000-12 for discovery including the registration with a GlobalDiscoveryServer.

Figure 27 shows a typical non-transparent Redundancy setup.

| Server 1

Server URI 1 Client and inf
Endpoint URL 1 ient and process info

Client

Redundant Set

Server 2

Server URI 2 Client and inf
Endpoint URL 2 ient and process info

Figure 27 — Non-Transparent Redundancy setup

For non-transparent Redundancy, the Servers will have unique IP addresses and unique
ApplicationUris. The Server also has additional Failover modes of Cold, Warm, Hot and
HotAndMirrored. The Client shall be aware of the RedundantServerSet and shall be required to
perform some actions depending on the Failover mode. These actions are described in Table 111
and additional examples and explanations are provided in 6.6.2.4.5.2.for Cold, 6.6.2.4.5.3 for Warm,
6.6.2.4.5.4 for Hot and 6.6.2.4.5.5 for HotAndMirrored.

A Client needs to be able to expect that the SourceTimestamp associated with a value is
approximately the same from all Servers in the RedundantServerSet for the same value.

6.6.2.4.2 ServicelLevel

The ServicelLevel provides information to a Client regarding the health of a Server and its ability to
provide data. See OPC 10000-5 for a formal definition for ServiceLevel. The ServiceLevel is a byte
with a range of 0 to 255, where the values fall into the sub-ranges defined in Table 109.

OPC 10000-4: Services 109 1.05.04

The algorithm used by a Server to determine its ServiceLevel within each sub-range is Server
specific. However, all Servers in a RedundantServerSet shall use the same algorithm to determine
the ServiceLevel. All Servers, regardless of RedundantServerSet membership, shall adhere to the
sub-ranges defined in Table 109.

Table 109 — ServicelLevel ranges

Sub-range | Name Description

0-0 Maintenance The Failed Server is in maintenance sub-range. Therefore, new Clients shall not connect and
currently connected Clients shall disconnect. The Server should expose a target time at which the
Clients are able to reconnect. See EstimatedReturnTime defined in OPC 10000-5 for additional
information.

A Server that has been set to Maintenance is typically undergoing some maintenance or updates.
The main goal for the Maintenance ServicelLevel is to ensure that Clients do not generate load on
the Server and allow time for the Server to complete any actions that are required. This load
includes even simple connections attempts or monitoring of the ServiceLevel. The
EstimatedReturnTime indicates when the Client should check to see if the Server is available. If
updates or patches are taking longer than expected the Client may discover that the
EstimatedReturnTime has been extended further into the future. If the Server does not provide
the EstimatedReturnTime, or if the time has lapsed, the Client should use a much longer interval
between reconnects to a Server in the Maintenance sub-range than its normal reconnect interval.

1-1 NoData The Failed Server is not operational. Therefore, a Client is not able to exchange any information
with it. The Server most likely has no data other than ServiceLevel, ServerStatus and diagnostic
information available.

A Failed Server in this sub-range has no data available. Clients may connect to it to obtain
ServicelLevel, ServerStatus and other diagnostic information. If the underlying system has failed,
typically the ServerStatus would indicate COMMUNICATION_FAULT. The Client may monitor
this Server for a ServerStatus and ServiceLevel change, which would indicate that normal
communication could be resumed.

2-199 Degraded The Server is partially operational, but is experiencing problems such that portions of the
AddressSpace are out of service or unavailable. An example usage of this ServiceLevel sub-
range would be if 3 of 10 devices connected to a Server are unavailable.

Servers that report a ServiceLevel in the Degraded sub-range are partially able to service Client
requests. The degradation could be caused by loss of connection to underlying systems or
functioning in a mode like a backup Server which results in less than full functionality being
available. Alternatively, it could be that the Server is overloaded to the point that it is unable to
reliably deliver data to Clients in a timely manner.

If Clients are experiencing difficulties obtaining required data, they shall switch to another Server
if any Servers in the Healthy range are available. If no Servers are available in the Healthy range,
then Clients may switch to a Server with a higher ServiceLevel or one that provides the required
data. Some Clients may also be configured for higher priority data and may check all Degraded
Servers, to see if any of the Servers are able to report as good quality the high priority data, but
this functionality would be Client specific. In some cases a Client may connect to multiple
Degraded Servers to maximize the available information.

200-255 Healthy The Server is fully operational. Therefore, a Client can obtain all information from this Server. The
sub-range allows a Server to provide information that can be used by Clients to load balance. An
example usage of this ServiceLevel sub-range would be to reflect the Server’'s CPU load where
data is delivered as expected.

Servers in the Healthy ServicelLevel sub-range are able to deliver information in a timely manner.
This ServiceLevel may change for internal Server reason or it may be used for load balancing
described in 6.6.2.4.3.

Client shall connect to the Server with the highest ServiceLevel. Once connected, the
ServiceLevel may change, but a Client shall not Failover to a different Server as long as the
ServiceLevel of the Server is accessible and in the Healthy sub-range.

6.6.2.4.3 Load balancing

In systems where multiple Hot Servers (see 6.6.2.4.5.4) are available, the Servers in the
RedundantServerSet can share the load generated by Clients by setting the ServicelLevel in the
Healthy sub-range based on the current load. Clients are expected to connect to the Server with the
highest ServiceLevel. Clients shall not Failover to a different Server in the RedundantServerSet of
Servers as long as the Server is in the Healthy sub-range. This is the normal behaviour for all
Clients, when communicating with redundant Servers. Servers can adjust their ServiceLevel based
on the number of Clients that are connected, CPU loading, memory utilization, or any other Server
specific criteria.

1.05.04 110 OPC 10000-4: Services

For example in a system with 3 Servers, all Servers are initially at ServiceLevel 255, but when a
Client connects, the Server with the Client connection sets its level to 254. The next Client would
connect to a different Server since both of the other Servers are still at 255.

It is up to the Server vendor to define the logic for spreading the load and the number of expected
Clients, CPU load or other criteria on each Server before the ServiceLevel is decremented. It is
envisioned that some Servers would be able to accomplish this without any communication between
the Servers.

6.6.2.4.4 Server Failover modes

The Failover mode of a Server is provided in the ServerRedundancy Object defined in OPC 10000-
5. The different Failover modes for non-transparent Redundancy are described in Table 110.

Table 110 — Server Failover modes

Name Description

Cold Cold Failover mode is where only one Server can be active at a time. This may mean that redundant
Servers are unavailable (not powered up) or are available but not running (PC is running, but application
is not started)

Warm Warm Failover mode is where the backup Server(s) can be active, but is not operating in a mode which
delivers the same level of functionality available from the primary Server. For example it cannot connect
to actual data points (typically, a system where the underlying devices are limited to a single
connection). Underlying devices, such as PLCs, may have limited resources that permit a single Server
connection. Therefore, only a single Server will be able to consume data. The ServicelLevel Variable
defined in OPC 10000-5 and the sub-range defined in Table 109 indicates the ability of the Server to
provide its data to the Client. The ServiceLevel of the primary Server will be in the Healthy ServiceLevel
sub-range. The ServiceLevel of the available backup Server will be in the Degraded ServiceLevel sub-
range.

Hot Hot Failover mode is where all Servers are powered-on, and are up and running. In scenarios where
Servers acquire data from a downstream device, such as a PLC, then one or more Servers are actively
connected to the downstream device(s) in parallel. These Servers have minimal knowledge of the other
Servers in their group and are independently functioning. When a Server fails or encounters a serious
problem then its ServiceLevel drops. On recovery, the Server returns to the RedundantServerSet with
an appropriate ServiceLevel to indicate that it is available.

HotAndMirrored HotAndMirrored Failover mode is where Failovers are for Servers that are mirroring their internal states
to all Servers in the RedundantServerSet and more than one Server can be active and fully operational.
Mirroring state minimally includes Sessions, Subscriptions, registered Nodes, ContinuationPoints,
sequence numbers, and sent Notifications. The ServiceLevel Variable defined in OPC 10000-5 should
be used by the Client to find the Servers with the highest ServiceLevel to achieve load balancing.

6.6.2.4.5 Client Failover behaviour
6.6.2.4.5.1 General

Each Server maintains a list of ServerUris for all redundant Servers in the RedundantServerSet.
The list is provided together with the Failover mode in the ServerRedundancy Object defined in OPC
10000-5. To enable Clients to connect to all Servers in the list, each Server in the list shall provide
the ApplicationDescription for all Servers in the RedundantServerSet through the FindServers
Service. This information is needed by the Client to translate the ServerUri into information needed
to connect to the other Servers in the RedundantServerSet. Therefore a Client needs to connect to
only one of the redundant Servers to find the other Servers based on the provided information. A
Client should persist information about other Servers in the RedundantServerSet.

Table 111 defines a list of Client actions for initial connections and Failovers.

OPC 10000-4: Services 111 1.05.04

Table 111 — Redundancy Failover actions

Failover mode and Client options Cold | Warm Hot (a) Hot (b) HotAndMirrored

On initial connection in addition to actions on Active Server:

Connect to more than one OPC UA Server. X X Optional for status check

Create Subscriptions and add monitored items. X X

Activate sampling on the Subscriptions. X

XXX | X

Activate publishing.

At Failover:

OpenSecureChannel to backup OPC UA Server

CreateSession on backup OPC UA Server

ActivateSession on backup OPC UA Server

Create Subscriptions and add monitored items.

Activate sampling on the Subscriptions. X

XXX X [X[X

X X

Activate publishing.

Clients communicating with a non-transparent RedundantServerSet of Servers require some
additional logic to be able to handle Server failures and to Failover to another Server in the
RedundantServerSet. Figure 28 provides an overview of the steps a Client typically performs when
it is first connecting to a RedundantServerSet. The figure does not cover all possible error scenarios.

CI ie nt Sta rt'u p OpenSecureChannel

CreateSession

e I Ste pS ActivateSession
\ Startup) On Next Server
Initial Server
Read Server
\ 4 ServiceLevel
OpenSecureChannel i
CreateSession
ActivateSession
Yes
. Keep server as €Ves s Servicelevel >
v active server — updated level Saved level
Read redundant
servers list
No
\ N 4
A
Read Server ServicelLevel
Save Server as active More Servers in
server and save level No List

\ 4

Start Process on selected Server

Figure 28 — Client Start-up steps

The initial Server may be obtained via standard discovery or from a persisted list of Servers in the
RedundantServerSet. But in any case the Client needs to check which Server in the Server set it
should connect to. Individual actions will depend on the Server Failover mode the Server provides
and the Failover mode the Client will use.

Clients once connected to a redundant Server shall be aware of the modes of Failover supported
by a Server since this support affects the available options related to Client behaviour. A Client may
always treat a Server using a lesser Failover mode, i.e. for a Server that provides Hot Redundancy,
a Client might connect and choose to treat it as if the Server was running in Warm Redundancy or
Cold Redundancy. This choice is up to the Client. In the case of Failover mode HotAndMirrored, the
Client shall not use Failover mode Hot or Warm as it would generate unnecessary load on the
Servers.

6.6.2.4.5.2 Cold

A Cold Failover mode is where the Client can only connect to one Server at a time. When the Client
loses connectivity with the Active Server it will attempt a connection to the redundant Server(s)

1.05.04 112 OPC 10000-4: Services

which may or may not be available. In this situation the Client may need to wait for the redundant
Server to become available and then create Subscriptions and Monitoredltems and activate
publishing. The Client shall cache any information that is required related to the list of available
Servers in the RedundantServerSet. Figure 29 illustrates the action a Client would take if it is talking
to a Server using Cold Failover mode. The monitor connection logic is defined in 6.7.

Cold
Source Alternate
Server Server
/,7;
{ Startup \,\
o /
OpenSecureChannel OpenSecureChannel
CreateSession —>> CreateSession
ActivateSession ActivateSession

P» MonitorConnection (<
g v
A 4
CreateSubscription CreateSubscription
CreateMonitoredItems CreateMonitoredltems
Error OK ¢
) 4

ActivateSampling

ActivateSampling

¢ SwitchServers ¢

Activate Publishing

Activate Publishing ——

Figure 29 — Cold Failover

NOTE There may be a loss of data from the time the connection to the Active Server is interrupted
until the time the Client gets Publish Responses from the backup Server.

6.6.2.4.5.3 Warm

A Warm Failover mode is where the Client should connect to one or more Servers in the
RedundantServerSet primarily to monitor the ServiceLevel. A Client can connect and create
Subscriptions and Monitoreditems on more than one Server, but sampling and publishing can only
be active on one Server. However, the active Server will return actual data, whereas the other
Servers in the RedundantServerSet will return an appropriate error for the Monitoreditems in the
Publish response such as Bad_NoCommunication. The one Active Server can be found by reading
the ServiceLevel Variable from all Servers. The Server with the highest ServicelLevel is the Active
Server. For Failover the Client activates sampling and publishing on the Server with the highest
ServicelLevel. Figure 30 illustrates the steps a Client would perform when communicating with a
Server using Warm Failover mode. The monitor connection logic is defined in 6.7.

OPC 10000-4: Services 113 1.05.04

Warm
Source Alternate
Server P] Server
—o’\\ Startup >—

OpenSecureChannel OpenSecureChannel
CreateSession < CreateSession
ActivateSession ActivateSession

» MonitorConnection
>
v \ 4
CreateSubscription CreateSubscription
CreateMonitoredltems CreateMonitoreditems
Error OK

\ 4

> ActivateSampling

ActivateSampling

SwitchServers

) 4

\ 4

Activate Publishing

Activate Publishing

Figure 30 — Warm Failover

NOTE There may be a temporary loss of data from the time the connection to the Active Server is
interrupted until the time the Client gets Publish Responses from the backup Server.

6.6.2.4.5.4 Hot

A Hot Failover mode is where the Client should connect to two or more Servers in the
RedundantServerSet and to subscribe to the ServiceLevel variable defined in OPC 10000-5 to find
the highest ServiceLevel to achieve load balancing; this means that Clients should issue Service
requests such as Browse, Read, Write to the Server with the highest ServiceLevel. Subscription
related activities will need to be invoked for each connected Server. Clients have the following
choices for implementing Subscription behaviour in a Hot Failover mode:

a. The Client connects to multiple Servers and establishes Subscription(s) in each where only
one is Reporting; the others are Sampling only. The Client should setup the queue size for
the Monitoredltems such that it can buffer all changes during the Failover time. The Failover
time is the time between the connection interruption and the time the Client gets Publish
Responses from the backup Server. On a Failover the Client shall enable Reporting on the
Server with the next highest availability.

b. The Client connects to multiple Servers and establishes Subscription(s) in each where all
Subscriptions are Reporting. The Client is responsible for handling/processing multiple
Subscription streams concurrently.

Figure 31 illustrate the functionality a Client would perform when communicating with a Server using
Hot Failover mode (the figure include both (a) and (b) options). The monitor connection logic is
defined in 6.7.

1.05.04 114 OPC 10000-4: Services

Source Hot (a) Alternate
Server Server
—0/ Startup —

OpenSecureChannel OpenSecureChannel
CreateSession < » CreateSession
ActivateSession ActivateSession

P» MonitorConnection <
> v

\ 4
i I CreateSubscription
CreateSub t
reatesubscription CreateMonitoredltems

CreateMonitoreditems
Error OK
Status

ActivateSampling

v

ActivateSampling

SwitchServers ﬁ
A\ 4

Activate Publishing

Activate Publishing

Hot (b)

Source Alternate
Server Server

/ Startup \—
./

OpenSecureChannel OpenSecureChannel
CreateSession < > CreateSession
ActivateSession ActivateSession

P MonitorConnection

v v

CreateSubscription
CreateMonitoredltems

Error OK ¢

ActivateSampling

CreateSubscription
CreateMonitoredltems

\ 4

ActivateSampling

Switch source being A\ 4

\ 4 processed

— Activate Publishing

Activate Publishing

Figure 31 — Hot Failover

Clients are not expected to automatically switch over to a Server that has recovered from a failure,
but the Client should establish a connection to it.

6.6.2.4.5.5 HotAndMirrored

A HotAndMirrored Failover mode is where a Client only connects to one Server in the
RedundantServerSet because the Server will share this session/state information with the other
Servers. In order to validate the capability to connect to other redundant Servers it is allowed to
create Sessions with other Servers and maintain the open connections by periodically reading the
ServiceLevel. A Client shall not create Subscriptions on the backup Servers for status monitoring
(to prevent excessive load on the Servers). This mode allows Clients to fail over without creating a
new context for communication. On a Failover the Client will simply create a new SecureChannel
on an alternate Server and then call ActivateSession; all Client activities (browsing, subscriptions,
history reads, etc.) will then resume. Figure 32 illustrate the behaviour a Client would perform when

OPC 10000-4: Services 115 1.05.04

communicating to a Server in HotAndMirrored Failover mode. The monitor connection logic is
defined in 6.7.

Hot and

Source Mirrored Alternate
Server Server

- N

\\ Startup /
OpenSecureChannel
CreateSession

ActivateSession

OpenSecureChannel
ActivateSession

MonitorConnection <

—i

\ 4

CreateSubscription

CreateMonitoreditems
Error oK
Subscriptions
\ 4 resume

ActivateSampling

i SwitchServers

Activate Publishing ——

Figure 32 — HotAndMirrored Failover

This Failover mode is similar to the transparent Redundancy. The advantage is that the Client has
full control over selecting the Server. The disadvantage is that the Client needs to be able to handle
Failovers.

6.6.2.5 Hiding Failover with a Server Proxy

A vendor can use the non-transparent Redundancy features to create a Server proxy running on the
Client machine to provide transparent Redundancy to the Client. This reduces the amount of
functionality that needs to be designed into the Client and to enable simpler Clients to take
advantage of non-transparent Redundancy. The Server proxy simply duplicates Subscriptions and
modifications to Subscriptions, by passing the calls on to both Servers, but only enabling publishing
and sampling on one Server. When the proxy detects a failure, it enables publishing and/or sampling
on the backup Server, just as the Client would if it were a Redundancy aware Client.

Figure 33 shows the Server proxy used to provide transparent Redundancy.

Server
proxy

G\

Server 1

Client

A\ 4

Redundant Set

Server 2

Figure 33 — Server proxy for Redundancy

1.05.04 116 OPC 10000-4: Services

6.6.3 Client Redundancy

Client Redundancy is supported in OPC UA by the TransferSubscriptions Service and by exposing
Client information in the Server diagnostic information. Since Subscription lifetime is not tied to the
Session in which it was created, backup Clients may use standard diagnostic information available
to monitor the active Client’s Session with the Server. Upon detection of an active Client failure, a
backup Client would then instruct the Server to transfer the Subscriptions to its own session. If the
Subscription is crafted carefully, with sufficient resources to buffer data during the change-over,
data loss from a Client Failover can be prevented.

OPC UA does not provide a standardized mechanism for conveying the Sessionld and
Subscriptionlds from the active Client to the backup Clients, but as long as the backup Clients know
the Client name of the active Client, this information is readily available using the
SessionDiagnostics and SubscriptionDiagnostics portions of the ServerDiagnostics data. This
information is available for authorized users and for the user active on the Session.
TransferSubscriptions requires the same user on all redundant Clients to succeed.

6.6.4 Network Redundancy

6.6.4.1 Overview

Redundant networks can be used with OPC UA in either transparent or non-transparent
Redundancy.

Network Redundancy can be combined with Server and Client Redundancy.

6.6.4.2 Transparent

In the transparent network use-case a single Server Endpoint can be reached through different
network paths. This case is completely handled by the network infrastructure. The selected network
path and Failover are transparent to the Client and the Server. Transparent network Redundancy is
illustrated in Figure 34.

Server

E
-alo-

F
.!

Client

Figure 34 — Transparent network Redundancy

OPC 10000-4: Services 117 1.05.04

Examples:
e A physical appliance/device such as a router or gateway which automatically changes the
network routing to maintain communications.
e Avirtual adapter which automatically changes the network adapter to maintain
communications.

6.6.4.3 Non-Transparent

In the non-transparent network use-case the Server provides different Endpoints for the different
network paths. This requires both the Server and the Client to support multiple network connections.
In this case the Client is responsible for selecting the Endpoint and for Failover. For Failover the
normal reconnect scenario described in 6.7 can be used. Only the SecureChannel is created with
another Endpoint. Sessions and Subscriptions can be reused. Non-transparent network
Redundancy is illustrated in Figure 35.

Server

Figure 35 — Non-transparent network Redundancy

The information about the different network paths is specified in NonTransparentRedundancyType
ObjectType defined in OPC 10000-5.

6.6.5 Manually Forcing Failover
In redundant systems, it is common to require that a particular Server in the RedundantServerSet

be taken out of the RedundantServerSet for a period of time. Some items that could cause this may
include:
e Certificate update
e Security reconfiguration
e Rebooting or restarting of the machine for
o software updates and patches

o installation of new software

e Reconfiguration of the AddressSpace

1.05.04 118 OPC 10000-4: Services

The removal from the RedundantServerSet can be done through a complete shutdown or by setting
the ServicelLevel of the Server to Maintenance sub-range. This can be done through a Server
specific configuration tool or through the Method RequestServerStateChange on the ServerType.
The Method is formally defined in OPC 10000-5.

This Method requires that the Client provide credentials with administrative rights on the Server.

6.7 Re-establishing connections

After a Client establishes a connection to a Server and creates a Subscription, the Client monitors
the connection status. Figure 36 shows the steps to connect a Client to a Server and the general
logic for reconnect handling. Not all possible error scenarios are covered.

The preferred mechanism for a Client to monitor the connection status is through the keep-alive of
the Subscription. A Client should subscribe for the State Variable in the ServerStatus to detect
shutdown or other failure states. If no Subscription is created or the Server does not support
Subscriptions, the connection can be monitored by periodically reading the State Variable.

R OpenSecureChannel
(\M CreateSession
ActivateSession

‘ Create Subscription }1

v

P Start Publish processing

v

Monitor Connection ‘

Connection
Status

OpenSecureChannel <

Service
Result

ActivateSession

v

Service CreateSession) Transfer
Result ActivateSession Subscription
Good Service Bad

Republish < >

Result

P
- \\
Good _seryice

Result Bad_Subscriptionldinvalid

Bad_MessageNotAvailable

Figure 36 — Reconnect sequence

When a Client loses the connection to the Server, the goal is to reconnect without losing information.
To do this the Client shall re-establish the connection by creating a new SecureChannel and
activating the Session with the Service ActivateSession. If the OpenSecureChannel fails, the Client
should delay the retry for a configurable time. The ActivateSession assigns the new SecureChannel
to the existing Session and allows the Client to reuse the Session and Subscriptions in the Server.
To re-establish the SecureChannel and activate the Session, the Client shall use the same security
policy, application instance certificate and the same user credential used to create the original

OPC 10000-4: Services 119 1.05.04

SecureChannel. This will result in the Client receiving data and event Notifications without losing
information provided the queues in the Monitoredltems do not overflow.

The Client shall only create a new Session if ActivateSession fails. TransferSubscriptions is used
to transfer the Subscription to the new Session. If TransferSubscriptions fails, the Client needs to
create a new Subscription.

When the connection is lost, Publish responses may have been sent but not received by the Client.

After re-establishing the connection the Client shall call Republish in a loop, starting with the next
expected sequence number and incrementing the sequence number until the Server returns the
status Bad_MessageNotAvailable. After receiving this status, the Client shall start sending Publish
requests with the normal Publish handling. This sequence ensures that the lost
NotificationMessages queued in the Server are not overwritten by new Publish responses.

If the Client detects missing sequence numbers in the Publish and is not able to get the lost
NotificationMessages through Republish, the Client should use the Method ResendData or should
read the values of all data Monitoredltems to make sure the Client has the latest values for all
Monitoreditems. ResendData allows the Client to resync its cache by receiving the current value for
each Monitoredltem. The data should be sent in the next regular Publishinglnterval.

The Server Object provides a Method ResendData that initiates resending of all data monitored
items in a Subscription. This Method is defined in OPC 10000-5. If this Method is called, subsequent
Publish responses shall contain the current value for each data Monitoredltem in the Subscription
where the MonitoringMode is set to Reporting. If a value is queued for a data Monitoredltem, the
next value in the queue is sent in the Publish response. If no value is queued for a data
Monitoreditem, the last value sent is repeated in the Publish response. The Server shall verify that
the Method is called within the Session context of the Session that owns the Subscription.

Independent of the detailed recovery strategy, the Client should make sure that it does not overwrite
newer data in the Client with older values provided through Republish.

If the Republish returns Bad_Subscriptionldinvalid, then the Client needs to create a new
Subscription.

Re-establishing the connection by creating a new SecureChannel may be rejected, because of a
new Server Application Instance Certificate or other security errors. OpenSecureChannel returns
Bad_Certificatelnvalid in the case of a new Server Application Instance Certificate. In case of
security failures, the Client shall use the GetEndpoints Service to fetch the most up to date security
information from the Server.

If the Client Application Instance Certificate is updated, the Client shall create a hew Session since
the Session does not allow a update of the Client Application Instance Certificate. The Client shall
try to transfer existing Subscriptions to the new Session. Transfer subscription shall be accepted by
a Server even for Anonymous user if the Client does not change i.e. the ApplicationUri of the Client
does not change and a secure connection is used.

OPC 10000-6 defines a reverse connect mechanism where the Server initiates the logical
connection. All subsequent steps like creating a SecureChannel are initiated by the Client. In this
scenario the Client is only able to initiate a reconnect if the Server initiates a new logical connection
after a connection interruption. The Client side reconnect handling described in Figure 36 applies
also to the reverse connect case. A Server is not able to actively check the connection status;
therefore the Server shall initiate a new connection in a configurable interval, even if a connection
to the Client is established. This ensures that an initiated connection is available for the reconnect
handling in addition to other scenarios where the Client needs more than one connection.

6.8 Durable Subscriptions

Monitoredltems are used to monitor Variable Values for data changes and event notifier Objects for
new Events. Subscriptions are used to combine data changes and events of the assigned
Monitoredltems to an optimized stream of network messages. A reliable delivery is ensured as long
as the lifetime of the Subscription and the queues in the Monitoreditems are long enough for a

1.05.04 120 OPC 10000-4: Services

network interruption between OPC UA Client and Server. All queues that ensure reliable delivery
are normally kept in memory and a Server restart would delete them.

There are use cases where OPC UA Clients have no permanent network connection to the OPC UA
Server or where reliable delivery of data changes and events is necessary even if the OPC UA
Server is restarted or the network connection is interrupted for a longer time.

To ensure this reliable delivery, the OPC UA Server shall keep collected data and events in until the
OPC UA Client has confirmed reception. It is possible that there will be data lost if the Server is not
shut down gracefully or in case of power failure. But the OPC UA Server should persist the queues
frequently even if the Server is not shut down.

The Method SetSubscriptionDurable defined in OPC 10000-5 is used to set a Subscription into this
durable mode and to allow much longer lifetimes and queue sizes than for normal Subscriptions.
The Method shall be called before the Monitoreditems are created in the durable Subscription. The
Server shall verify that the Method is called within the Session context of the Session that owns the
Subscription.

A value of 0 for the parameter lifetimelnHours requests the highest lifetime supported by the Server.
The revisedLifetimelnHours is used to set the LifetimeCount of the Subscription.

ModifySubscription can be used to change the parameters of the durable Subscription. If the Client
would like to keep the previous life time setting, the Client needs to calculate the LifetimeCount

based on the revisedLifetimelnHours and the Publishinginterval. ModifySubscription does not
change the durable mode of the Subscription.

An OPC UA Server providing durable Subscriptions shall
e Support the SetSubscriptionDurable Method defined in OPC 10000-5
e Support Service TransferSubscriptions
e Support long Subscription lifetimes, minimum requirements are define in OPC 10000-7
e Support large Monitoredltem queues, minimum requirements are define in OPC 10000-7
e Store Subscriptions settings and sent notification messages with sequence numbers
e Store Monitoredltem settings and queues

An OPC UA Client using durable Subscriptions shall

e Use the SetSubscriptionDurable Method defined in OPC 10000-5 to create a durable
Subscription

e Close Sessions for planned communication interruptions

e Use the Service TransferSubscriptions to assign the durable Subscription to a new Session
for data transfer

e Store Subscriptionld, Monitoredltem client and server handles and the last confirmed
sequence number

7 Common parameter type definitions

7.1 AdditionalParametersType

The AdditionalParametersType parameter is used as value of the additionalHeader field of the
RequestHeader and ResponseHeader parameters. It allows Clients and Servers to pass additional
named parameters with Service requests or responses. These named parameters may be defined
by the OPC UA specification, a companion specification or be specific to a vendor implementation.
The name is a QualifiedName which allows the same name to be used in different contexts. The
value is a Variant which allows Structures to be passed in addition to basic types such as Strings.

OPC 10000-4: Services

Note that the calls to CreateSession/ActivateSession are made before the Client can read the
Server’s current NamespaceArray. This means that only names with a Namespacelndex of 0 or 1
may be used in the requests for these Services. Companion specifications and vendors can define
names in for use with Namespacelndex 1 if they add prefix that ensures uniqueness. The same

121 1.05.04

restriction applies to values which contain DataTypes with Namespacelndexes.

The components of this structure are defined in Table 112.

Table 112 — AdditionalParametersType

Name Type Description
AdditionalParametersType structure Specifies a list of value qualified by a name.
parameters KeyValuePair [] | A list of headers identified by a QualifiedName.
The KeyValuePair type is defined in OPC 10000-5.

7.2 ApplicationDescription

The components of this parameter are defined in Table 113.

Table 113 — ApplicationDescription

Name Type Description
ApplicationDescription structure Specifies an application that is available.
applicationUri String The globally unique identifier for the application instance. This URI is used as
ServerUri in Services if the application is a Server.
productUri String The globally unique identifier for the product.

applicationName

LocalizedText

A localized descriptive name for the application.

applicationType

Enum
ApplicationType

The type of application. The ApplicationType enumeration is defined in 7.4.

gatewayServerUri

String

A URI that identifies the Gateway Server associated with the discoveryUrls.
This value is null or empty if the Server can be accessed directly.
This field is not used if the applicationType is CLIENT.

discoveryProfileUri

String

A URI that identifies the discovery profile supported by the URLs provided.
This field is not used if the applicationType is CLIENT.

If this value is null or empty then the Endpoints shall support the Discovery
Services defined in 5.5.

Alternate discovery profiles are defined in OPC 10000-7.

discoveryUrls []

String

A list of URLSs for the DiscoveryEndpoints provided by the application.
If the applicationType is CLIENT, this field shall contain an empty list.

7.3 ApplicationIinstanceCertificate

An ApplicationinstanceCertificate is a ByteString containing an encoded Certificate. The encoding
of an ApplicationinstanceCertificate depends on the security technology mapping and is defined
completely in OPC 10000-6. Table 114 specifies the information that should be contained in an

ApplicationinstanceCertificate.

1.05.04 122 OPC 10000-4: Services

Table 114 — ApplicationinstanceCertificate

Name Type Description
ApplicationinstanceCertificate | structure ApplicationinstanceCertificate with signature created by a Certificate Authority.
version String An identifier for the version of the Certificate encoding.
serialNumber ByteString A unique identifier for the Certificate assigned by the Issuer.
signatureAlgorithm String The algorithm used to sign the Certificate.
The syntax of this field depends on the Certificate encoding.
signhature ByteString The signature created by the Issuer.
issuer Structure A name that identifies the Issuer Certificate used to create the signature.
validFrom UtcTime When the Certificate becomes valid.
validTo UtcTime When the Certificate expires.
subject Structure A name that identifies the application instance that the Certificate describes.

This field should contain the productName and the name of the organization
responsible for the application instance.

applicationUri String The applicationUri specified in the ApplicationDescription.
The ApplicationDescription is described in 7.2.
hostnames [] String The name of the machine where the application instance runs.

A machine may have multiple names if is accessible via multiple networks.
The hostname may be a numeric network address or a descriptive name.
Server Certificates should have at least one hostname defined.

publicKey ByteString The public key associated with the Certificate.

keyUsage [] String Specifies how the Certificate key may be used.
ApplicationinstanceCertificates should support Digital Signature, Non-
Repudiation Key Encryption, Data Encryption and Client/Server Authorization.
The contents of this field depend on the Certificate encoding.

7.4 ApplicationType

The ApplicationType is an enumeration that specifies the type of OPC UA Application. The possible
values are described in Table 115.

Table 115 — ApplicationType values

Name Value | Description

SERVER 0 The application is a Server.

CLIENT 1 The application is a Client.
CLIENTANDSERVER | 2 The application is a Client and a Server.
DISCOVERYSERVER | 3 The application is a DiscoveryServer.

7.5 BrowseDirection

The BrowseDirection is an enumeration that specifies the direction of References to follow. The
possible values are described in Table 116.

Table 116 — BrowseDirection values

Name Value | Description

FORWARD 0 Select only forward References.
INVERSE 1 Select only inverse References.

BOTH 2 Select forward and inverse References.
INVALID 3 No value specified.

7.6 BrowseResult

The components of this parameter are defined in Table 117.

OPC 10000-4: Services 123 1.05.04

Table 117 — BrowseResult

Name Type Description
BrowseResult structure The results of a Browse operation.
statusCode StatusCode The status for the BrowseDescription.

This value is set to Good if there are still references to return for the
BrowseDescription.

continuationPoint | ContinuationPoint A Server defined opague value that identifies the continuation point.
The ContinuationPaint type is defined in 7.9.
References [] ReferenceDescription The set of references that meet the criteria specified in the BrowseDescription.

Empty, if no References met the criteria.
The Reference Description type is defined in 7.30.

7.7 ContentFilter
7.7.1 ContentFilter structure

The ContentFilter structure defines a collection of elements that define filtering criteria. Each
element in the collection describes an operator and an array of operands to be used by the operator.
The operators that can be used in a ContentFilter are described in Table 122. The filter is evaluated
by evaluating the first entry in the element array starting with the first operand in the operand array.
The operands of an element may contain References to sub-elements resulting in the evaluation
continuing to the referenced elements in the element array. The evaluation shall not introduce loops.
For example evaluation starting from element “A” shall never be able to return to element “A”.
However there may be more than one path leading to another element “B”. If an element cannot be
traced back to the starting element it is ignored. Extra operands for any operator shall result in an
error. Annex B provides examples using the ContentFilter structure.

Table 118 defines the ContentFilter structure.

Table 118 — ContentFilter structure

Name Type Description
ContentFilter structure
elements [] ContentFilterElement List of operators and their operands that compose the filter criteria. The filter is

evaluated by starting with the first entry in this array. This structure is defined
in-line with the following indented items.

filterOperator Enum Filter operator to be evaluated.
FilterOperator The FilterOperator enumeration is defined in Table 122.

filterOperands [| | Extensible Parameter Operands used by the selected operator. The number and use depend on the
FilterOperand operators defined in Table 122. This array needs at least one entry.

This extensible parameter type is the FilterOperand parameter type specified
in 7.7.4. It specifies the list of valid FilterOperand values.

7.7.2 ContentFilterResult
The components of this data type are defined in Table 119.

1.05.04 124 OPC 10000-4: Services

Table 119 — ContentFilterResult structure

Name Type Description
ContentFilterResult structure A structure that contains any errors associated with the filter.
elementResults [] ContentFilter A list of results for individual elements in the filter. The size and order of the list

ElementResult | matches the size and order of the elements in the ContentFilter parameter.
This structure is defined in-line with the following indented items.

statusCode StatusCode The status code for a single element.

operandStatusCodes [] StatusCode A list of status codes for the operands in an element. The size and order of the
list matches the size and order of the operands in the ContentFilterElement.
This list is empty if no operand errors occurred.

operandDiagnosticinfos [| | Diagnosticinfo | A list of diagnostic information for the operands in an element. The size and
order of the list matches the size and order of the operands in the
ContentFilterElement. This list is empty if diagnostics information was not
requested in the request header or if no diagnostic information was
encountered in processing of the operands.

elementDiagnosticinfos [] Diagnosticinfo | A list of diagnostic information for individual elements in the filter. The size and
order of the list matches the size and order of the elements in the filter request
parameter. This list is empty if diagnostics information was not requested in
the request header or if no diagnostic information was encountered in
processing of the elements.

Table 120 defines values for the StatusCode parameter that are specific to this structure. Common
StatusCodes are defined in Table 183.

Table 120 — ContentFilterResult Result Codes

Symbolic Id Description

Bad_FilterOperandCountMismatch The number of operands provided for the filter operator was less than expected for the
operand provided.

Bad_FilterOperatorlnvalid An unrecognized operator was provided in a filter.

Bad_FilterOperatorUnsupported A valid operator was provided, but the Server does not provide support for this filter
operator.

Table 121 defines values for the operandStatusCodes parameter that are specific to this structure.
Common StatusCodes are defined in Table 183.

Table 121 — ContentFilterResult Operand Result Codes

Symbolic Id Description

Bad_FilterOperandinvalid See Table 183 for the description of this result code.
Bad_FilterElementinvalid The referenced element is not a valid element in the content filter.
Bad_FilterLiterallnvalid The referenced literal is not a valid BaseDataType.
Bad_Attributeldinvalid The attribute id is not a valid attribute id in the system.
Bad_IndexRangelnvalid See Table 183 for the description of this result code.
Bad_NodeldInvalid See Table 183 for the description of this result code.
Bad_NodeldUnknown See Table 183 for the description of this result code.
Bad_NotTypeDefinition The provided Nodeld was not a type definition Nodeld.

7.7.3 FilterOperator

Table 122 defines the basic operators that can be used in a ContentFilter. See Table 123 for a
description of advanced operators. See 7.7.4 for a definition of operands.

OPC 10000-4: Services

125

Table 122 — Basic FilterOperator definition

Operator
Name

Operator
Number

Number of
Operands

Description

Equals

0

2

TRUE if operand[0] is equal to operand[1].

If the operands are of different types, the system shall perform any implicit
conversion to a common type. This operator resolves to FALSE if no implicit
conversion is available and the operands are of different types. This operator
returns FALSE if the implicit conversion fails. See the discussion on data type
precedence in Table 126 for more information how to convert operands of
different types.

IsNull

TRUE if operand[0] is a null value.
TRUE If the value in operand[0] is a StatusCode instead of the field DataType.

GreaterThan

TRUE if operand[0] is greater than operand[1].
The following restrictions apply to the operands:
[0]: Any operand that resolves to an ordered value.
[1]: Any operand that resolves to an ordered value.
The same conversion rules as defined for Equals apply.

LessThan

TRUE if operand[0] is less than operand[1].
The same conversion rules and restrictions as defined for GreaterThan apply.

GreaterThanOrEqual

TRUE if operand[0] is greater than or equal to operand[1].
The same conversion rules and restrictions as defined for GreaterThan apply.

LessThanOrEqual

TRUE if operand[0] is less than or equal to operand[1].
The same conversion rules and restrictions as defined for GreaterThan apply.

Like

TRUE if operand[0] matches a pattern defined by operand[1]. See Table 124 for
the definition of the pattern syntax.
The following restrictions apply to the operands:
[O]: Any operand that resolves to a String.
[1]: Any operand that resolves to a String.
This operator resolves to FALSE if no operand can be resolved to a string.

Not

TRUE if operand[0] is FALSE.
The following restrictions apply to the operands:
[0]: Any operand that resolves to a Boolean.
If the operand cannot be resolved to a Boolean, the result is a NULL. See below
for a discussion on the handling of NULL.

Between

TRUE if operand[0] is greater or equal to operand[1] and less than or equal to
operand[2].
The following restrictions apply to the operands:

[O]: Any operand that resolves to an ordered value.

[1]: Any operand that resolves to an ordered value.

[2]: Any operand that resolves to an ordered value.
If the operands are of different types, the system shall perform any implicit
conversion to match all operands to a common type. If no implicit conversion is
available and the operands are of different types, the particular result is FALSE.
See the discussion on data type precedence in Table 126 for more information
how to convert operands of different types.

InList

TRUE if operand[0] is equal to one or more of the remaining operands.
The Equals Operator is evaluated for operand[0] and each remaining operand in
the list. If any Equals evaluation is TRUE, InList returns TRUE.

And

10

TRUE if operand[0] and operand[1] are TRUE.
The following restrictions apply to the operands:
[O]: Any operand that resolves to a Boolean.
[1]: Any operand that resolves to a Boolean.
If any operand cannot be resolved to a Boolean it is considered a NULL. See
below for a discussion on the handling of NULL.

11

TRUE if operand[0] or operand[1] are TRUE.
The following restrictions apply to the operands:
[0]: Any operand that resolves to a Boolean.
[1]: Any operand that resolves to a Boolean.
If any operand cannot be resolved to a Boolean it is considered a NULL. See
below for a discussion on the handling of NULL.

Cast

12

Converts operand[0] to a value with a data type with a Nodeld identified by
operand[1].
The following restrictions apply to the operands:

[O]: Any operand.

[1]: Any operand that resolves to a Nodeld or ExpandedNodeld where the
Node is of the NodeClass DataType.
If there is any error in conversion or in any of the parameters then the Cast
Operation evaluates to a NULL. See below for a discussion on the handling of
NULL.

1.05.04

1.05.04 126 OPC 10000-4: Services

Operator Operator| Number of Description
Name Number | Operands
BitwiseAnd 16 2 The result is an integer which matches the size of the largest operand and

contains a bitwise And operation of the two operands where both have been
converted to the same size (largest of the two operands).
The following restrictions apply to the operands:

[O]: Any operand that resolves to an integer.

[1]: Any operand that resolves to an integer.
If any operand cannot be resolved to an integer it is considered a NULL. See
below for a discussion on the handling of NULL.

BitwiseOr 17 2 The result is an integer which matches the size of the largest operand and
contains a bitwise Or operation of the two operands where both have been
converted to the same size (largest of the two operands).
The following restrictions apply to the operands:

[O]: Any operand that resolves to an integer.

[1]: Any operand that resolves to an integer.
If any operand cannot be resolved to an integer it is considered a NULL. See
below for a discussion on the handling of NULL.

Many operands have restrictions on their type. This requires the operand to be evaluated to
determine what the type is. In some cases the type is specified in the operand (i.e. a LiteralOperand).
In other cases the type requires that the value of an attribute be read. An ElementOperand evaluates
to a Boolean value unless the operator is a Cast or a nested RelatedTo operator.

Operands that resolve to an ordered value are restricted to the DataTypes Byte, Int16, Int32, Int64,
SByte, UInt16, UInt32, UInt64, Float, Double and DateTime.

When testing for equality, a Server shall treat null and empty arrays of the same DataType as equal.
This also applies to Strings and ByteStrings.

Table 123 defines complex operators that require a target node (i.e. row) to evaluate. These
operators shall be re-evaluated for each possible target node in the result set.

OPC 10000-4: Services 127 1.05.04

Table 123 — Complex FilterOperator definition

Operator Operator Number of Description
Name Number Operands
InView 13 1 TRUE if the target Node is contained in the View defined by operand[0].

The following restrictions apply to the operands:

[O]: Any operand that resolves to a Nodeld that identifies a View Node.
If operand[0] does not resolve to a Nodeld that identifies a View Node, this
operation shall always be False.
OfType 14 1 TRUE if the target Node is of type operand[0] or of a subtype of operand[0].
The following restrictions apply to the operands:

[O]: Any operand that resolves to a Nodeld that identifies an ObjectType or

VariableType Node.

If operand[0] does not resolve to a Nodeld that identifies an ObjectType or
VariableType Node, this operation shall always be False.
RelatedTo 15 6 TRUE if the target Node is of type operand[0] and is related to a Nodeld of the
type defined in operand[1] by the Reference type defined in operand[2].
operand[0] or operand[1] can also point to an element Reference where the
referred to element is another RelatedTo operator. This allows chaining of
relationships (e.g. A is related to B is related to C), where the relationship is
defined by the ReferenceType defined in operand[2]. In this case, the referred to
element returns a list of Nodelds instead of TRUE or FALSE. In this case if any
errors occur or any of the operands cannot be resolved to an appropriate value,
the result of the chained relationship is an empty list of nodes.
Operand[3] defines the number of hops for which the relationship should be
followed. If operand[3] is 1, then objects shall be directly related. If a hop is
greater than 1, then a Nodeld of the type described in operand[1] is checked for
at the depth specified by the hop. In this case, the type of the intermediate Node
is undefined, and only the Reference type used to reach the end Node is
defined. If the requested number of hops cannot be followed, then the result is
FALSE, i.e., an empty Node list. If operand[3] is O, the relationship is followed to
its logical end in a forward direction and each Node is checked to be of the type
specified in operand[1]. If any Node satisfies this criterion, then the result is
TRUE, i.e., the Nodeld is included in the sub-list.
Operand [4] defines if operands [0] and [1] should include support for subtypes
of the types defined by these operands. A TRUE indicates support for subtypes
operand [5] defines if operand [2] should include support for subtypes of the
reference type. A TRUE indicates support for subtypes.

The following restrictions apply to the operands:

[0]: Any operand that resolves to a Nodeld or ExpandedNodeld that identifies
an ObjectType or VariableType Node or a reference to another element
which is a RelatedTo operator.

[1]: Any operand that resolves to a Nodeld or ExpandedNodeld that identifies
an ObjectType or VariableType Node or a reference to another element
which is a RelatedTo operator.

[2]: Any operand that resolves to a Nodeld that identifies a ReferenceType
Node.

[3]: Any operand that resolves to a value implicitly convertible to UInt32.

[4]: Any operand that resolves to a value implicitly convertible to a Boolean; if
this operand does not resolve to a Boolean, then a value of FALSE is used.

[5]: Any operand that resolves to a value implicitly convertible to a Boolean; if
this operand does not resolve to a Boolean, then a value of FALSE is used.

If none of the operands [0],[1],[2],[3] resolves to an appropriate value then the
result of this operation shall always be False (or an Empty set in the case of a
nested RelatedTo operand).

See examples for RelatedTo in B.2.

The RelatedTo operator can be used to identify if a given type, set as operand[1], is a subtype of
another type set as operand[0] by setting operand[2] to the HasSubtype ReferenceType and
operand[3] to O.

The Like operator can be used to perform wildcard comparisons. Several special characters can be
included in the second operand of the Like operator. The valid characters are defined in Table 124.
The wildcard characters can be combined in a single string (i.e. ‘Thl[ia][ts]%’ would match ‘That is
fine’, ‘This is fine’, ‘That as one’, ‘This it is’, ‘Then at any’, etc.). The Like operator is case sensitive.

1.05.04 128 OPC 10000-4: Services

Table 124 — Wildcard characters

Special Description
Character

Match any string of zero or more characters (i.e. ‘main%’ would
match any string that starts with ‘main’, ‘%en%’ would match
% any string that contains the letters ‘en’ such as ‘entail’, ‘green’
and ‘content’.) If a ‘%’ sign is intend in a string the list operand
can be used (i.e. 5[%] would match ‘5%’).
Match any single character (i.e. *_ould’ would match ‘would’,
‘could’). If the *_’ is intended in a string then the list operand can
be used (i.e. 5[] would match ‘5_°).
Escape character allows literal interpretation
(i.e. \is\,\% is %, _is)
Match any single character in a list
(i.e. ‘abc[13-68] would match ‘abc1’, ‘abc3’, ‘abc4’, ‘abch’,
! ‘abc6’, and ‘abc8’.
‘xyz[c-f] would match ‘xyzc’, ‘xyzd’, ‘xyze’, ‘xyzf’).
Not Matching any single character in a list.
o The » shall be the first character inside on the [].

(i.e. ‘"ABC[*13-5]' would NOT match ‘ABC1’, ‘ABC3’, ‘ABC4’,
and ‘ABC5'’. xyz[*dgh] would NOT match ‘xyzd’, ‘xyzg’, ‘xyzh’.)

Table 125 defines the conversion rules for the operand values. The types are automatically
converted if an implicit conversion exists (I). If an explicit conversion exists (E) then type can be
converted with the cast operator. If no conversion exists (X) the then types cannot be converted,
however, some Servers may support application specific explicit conversions. The types used in the
table are defined in OPC 10000-3. A data type that is not in the table does not have any defined
conversions.

OPC 10000-4: Services 129 1.05.04

Table 125 — Conversion rules

Target Type (To)
_¢ .

EE g £l E
* 22| | L 5
® S S| E|lol|T ° Q N2lo ol iE’
2lelSlel2|8|s|elelyls|e|Sl2|s|5|2|2le|L
Sla|a|8|8|a|C|3|E|E|E|2|8|a|5|8|8|5|5|5|%
Boolean - | X | X | X | X | | | X | X|E [X |X | | | X
Byte E|- | X |[X | X | X | | | X | X |E [X | X | | | X
ByteString XX |- [X|X|X[X|E|X[X[X]|X[|X[X|X|X[X]|X|X][|X]|X
DateTime XX | X[-|X|X[X|X|X[X[X|X|X[X|E|X[X|X]|X|[X|X
Double E|IE|[X|X]|-|X|E|X|E|E|E|X|E|X|E|[|X|X]|E|E|E]|X
ExpandedNodeld | X [X [X | X [X | - [X | X | X [X | X |E | X [X | X | X[X | X|X[X
Float E|E | X |X | X|-|X|E|E|E|X|E[|X|E|X|X|E|E]|E|[X
Guid XIX|E[X|X | X[X]|-[|X[X[X|X|X[X|E|X[X|X|X|[X|X
Int16 E|E | X |X | X | X | - | | X|E|[X|E|X|X|E | | X
Int32 E|E | X [X | X | X | E | - | X|E|E|E | X|[X]|E]|E | X
Int64 E|E | X |X | X | X|E|E|-|X|E|E|E|X|X|E]|E]|E/|X
Nodeld X[X | X | X |X | X[X[X | X | X |- |X]|X | X | X[X | X|X[X
SByte E|E | X |X | X | X | | | X|-[X|E|X]|X | | | X
StatusCode XX | X[X|X | X[X|X|X|E|JE|X|X|-|X|X|[X|E|E]|E/|X
String | | X | E | E | | | | | E | X | - E | E | | | X
LocalizedText X[X | X[X | X[X[X[X|X|X[X]|X]|X]|[X | - X[X | X | X [X
QualifiedName XX | X[XX | X[X|[X]|X|X[X]|X]|X]|X | | - XX | X[X
Uintl6 E|E | X |X | X | X | | | X | E | E[X | X]| - | | X
UInt32 E|E | X |X | X | X | E | | X|E|E|E | X|X]|E]| - | X
Uint64 E|E | X [X | X | X | E | X|E|E|E | X|X|E - | X
XmlIElement XX | X[X | X | X[X]|X]|X X[X[X | X | X[X]|X]|X X | -

Arrays of a source type can be converted to arrays of the target type by converting each element.
A conversion error for any element causes the entire conversion to fail.

Arrays of length 1 can be implicitly converted to a scalar value of the same type.

Guid, Nodeld and ExpandedNodeld are converted to and from String using the syntax defined in
OPC 10000-6.

Floating point values are rounded by adding 0.5 and truncating when they are converted to integer
values.

Converting a negative value to an unsigned type causes a conversion error. If the conversion fails
the result is a null value.

Converting a value that is outside the range of the target type causes a conversion error. If the
conversion fails the result is a null value.

ByteString is converted to String by formatting the bytes as a sequence of hexadecimal digits.

1.05.04 130 OPC 10000-4: Services

LocalizedText values are converted to Strings by dropping the Locale. Strings are converted to

LocalizedText values by setting the Locale to “”.

QualifiedName values are converted to Strings by dropping the Namespacelndex. Strings are
converted to QualifiedName values by setting the Namespacelndex to O.

A StatusCode can be converted to and from a UInt32 and Int32 by copying the bits. Only the top 16-
bits if the StatusCode are copied when it is converted to and from a Ulnt16 or Int16 value. Since
Event fields can have a StatusCode instead of the expected DataType, a StatusCode can only be
converted to an integer with an explicit conversion.

Boolean values are converted to ‘1’ when true and ‘0’ when false. Non zero numeric values are
converted to true Boolean values. Numeric values of 0 are converted to false Boolean values. String
values containing “true”, “false”, “1” or “0” can be converted to Boolean values. Other string values

cause a conversion error. In this case Strings are case-insensitive.

It is sometimes possible to use implicit casts when operands with different data types are used in
an operation. In this situation the precedence rules defined in Table 126 are used to determine
which implicit conversion to use. The first data type in the list (top down) has the most precedence.
If a data type is not in this table then it cannot be converted implicitly while evaluating an operation.

For example, assume that A = 1,1 (Float) and B = 1 (Int32) and that these values are used with an
Equals operator. This operation would be evaluated by casting the Int32 value to a Float since the
Float data type has more precedence.

Table 126 — Data Precedence rules

Rank Data Type
1 Double
2 Float
3 Int64
4 Uint64
5 Int32
6 Uint32
7 StatusCode
8 Int16
9 Uintl6
10 SByte
11 Byte
12 Boolean
13 Guid
14 String
15 ExpandedNodeld
16 Nodeld
17 LocalizedText
18 QualifiedName

Operands may contain null values (i.e. values which do not exist). When this happens, the element
always evaluates to NULL (unless the IsNull operator has been specified).
Table 127 defines how to combine elements that evaluate to NULL with other elements in a logical
AND operation.

Table 127 — Logical AND Truth table

TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL

OPC 10000-4: Services

Table 128 defines how to combine elements that evaluate to NULL with other elements in a logical

OR operation.

Table 128 — Logical OR Truth table

131

TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

The NOT operator always evaluates to NULL if applied to a NULL operand.
A ContentFilter which evaluates to NULL after all elements are evaluated is evaluated as FALSE.
For any fatal errors like out of memory situations, the operator either evaluates to FALSE or NULL.

7.7.4 FilterOperand parameters
7.7.4.1 Overview

The ContentFilter structure specified in 7.7 defines a collection of elements that makes up filter
criteria and contains different types of FilterOperands. The FilterOperand parameter is an extensible
parameter. This parameter is defined in Table 129. The ExtensibleParameter type is defined in 7.17.

Table 129 - FilterOperand parameter Typelds

Symbolic Id Description

Element Specifies an index into the array of elements. This type is used to build a logic tree of sub-
elements by linking the operand of one element to a sub-element.

Literal Specifies a literal value.

Attribute Specifies any Attribute of an Object or Variable Node using a Node in the type system and
relative path constructed from ReferenceTypes and BrowseNames.

SimpleAttribute Specifies any Attribute of an Object or Variable Node using a TypeDefinition and a relative path
constructed from BrowseNames.

7.7.4.2 ElementOperand

The ElementOperand provides the linking to sub-elements within a ContentFilter. The link is in the
form of an integer that is used to index into the array of elements contained in the ContentFilter. An
index is considered valid if its value is greater than the element index it is part of and it does not
Reference a non-existent element. Clients shall construct filters in this way to avoid circular and
invalid References. Servers should protect against invalid indexes by verifying the index prior to
using it.

Table 130 defines the ElementOperand type.

Table 130 — ElementOperand

Name Type Description
ElementOperand structure ElementOperand value.
index UlInt32 Index into the element array.

7.7.4.3 LiteralOperand
Table 131 defines the LiteralOperand type.

Table 131 — LiteralOperand

Name Type Description
LiteralOperand structure LiteralOperand value.
value BaseDataType A literal value.

7.7.4.4 AttributeOperand
Table 132 defines the AttributeOperand type.

1.05.04 132 OPC 10000-4: Services

Table 132 — AttributeOperand

Name Type Description
AttributeOperand structure Attribute of a Node in the AddressSpace.
nodeld Nodeld Nodeld of a Node from the type system.
alias String An optional parameter used to identify or refer to an alias. An alias is a symbolic

name that can be used to alias this operand and use it in other locations in the
filter structure.

browsePath RelativePath Browse path relative to the Node identified by the nodeld parameter. See 7.31
for the definition of RelativePath.

attributeld Integerld Id of the Attribute. This shall be a valid Attributeld. The Integerld is defined in
7.19. The Integerlds for the Attributes are defined in OPC 10000-6.

indexRange NumericRange This parameter is used to identify a single element of an array or a single range

of indexes for an array. The first element is identified by index O (zero).

The NumericRange type is defined in 7.27.

This parameter is not used if the specified Attribute is not an array. However, if
the specified Attribute is an array and this parameter is not used, then all
elements are to be included in the range. The parameter is null or empty if not
used.

7.7.4.5 SimpleAttributeOperand

The SimpleAttributeOperand is a simplified form of the AttributeOperand and all of the rules that
apply to the AttributeOperand also apply to the SimpleAttributeOperand. The examples provided in
B.1 only use AttributeOperand, however, the AttributeOperand can be replaced by a
SimpleAttributeOperand whenever all ReferenceTypes in the RelativePath are subtypes of
HierarchicalReferences and the targets are Object or Variable Nodes and an Alias is not required.

Table 133 defines the SimpleAttributeOperand type.

Table 133 — SimpleAttributeOperand

Name Type Description
SimpleAttributeOperand | structure Attribute of a Node in the AddressSpace.
typeDefinitionld Nodeld Nodeld of a TypeDefinitionNode.

This parameter restricts the operand to instances of the TypeDefinitionNode or
one of its subtypes.

If the SimpleAttributeOperand is used in an EventFilter and the typeDefinitionld is
BaseEventType the Server shall evaluate the browsePath without
considering the typeDefinitionld.

browsePath [] QualifiedName A relative path to a Node.

This parameter specifies a relative path using a list of BrowseNames instead of
the RelativePath structure used in the AttributeOperand. The list of
BrowseNames is equivalent to a RelativePath that specifies forward references
which are subtypes of the HierarchicalReferences ReferenceType.

All Nodes followed by the browsePath shall be of the NodeClass Object or
Variable.

If this list is empty the Node is the instance of the TypeDefinition.

attributeld Integerld Id of the Attribute. The Integerld is defined in 7.19.

The Value Attribute shall be supported by all Servers. The support of other
Attributes depends on requirements set in Profiles or other parts of this
specification.

indexRange NumericRange This parameter is used to identify a single element of an array, or a single range
of indexes for an array. The array in this context includes String and ByteString.
The first element is identified by index 0 (zero).

This parameter is ignored if the selected Node is not a Variable or the Value of a
Variable is not an array.

All values in the array are used if this parameter is null or empty.

The NumericRange type is defined in 7.27.

7.8 Counter

This primitive data type is a UInt32 that represents the value of a counter. The initial value of a
counter is specified by its use. Modulus arithmetic is used for all calculations, where the modulus is
max value + 1. Therefore,

X +y = (x + yymod(max value + 1)

For example:

OPC 10000-4: Services 133 1.05.04

max value + 1 =0
max value + 2 =1
7.9 ContinuationPoint

A ContinuationPoint is used to pause a Browse, QueryFirst or HistoryRead operation and allow it to
be restarted later by calling BrowseNext, QueryNext or HistoryRead. Operations are paused when
the number of results found exceeds the limits set by either the Client or the Server.

The Client specifies the maximum number of results per operation in the request message. A Server
shall not return more than this number of results but it may return fewer results. The Server allocates
a ContinuationPoint if there are more results to return.

Servers shall support at least one ContinuationPoint per Session. Servers specify a maximum
number of ContinuationPoints per Session in the ServerCapabilities Object defined in OPC 10000-
5. ContinuationPoints remain active until the Client retrieves the remaining results, the Client
releases the ContinuationPoint or the Session is closed. A Server shall automatically free
ContinuationPoints from prior requests from a Session if they are needed to process a new request
from this Session. The Server returns a Bad_ContinuationPointlnvalid error if a Client tries to use a
ContinuationPoint that has been released. A Client can avoid this situation by completing paused
operations before starting new operations. For Session-less Service invocations, the
ContinuationPoints are shared across all Session-less Service invocations from all Clients. The
Server shall support at least the maximum number of ContinuationPoints it would allow for one
Session. A Server may support an infinite number of ContinuationPoints by adding all information
necessary to continue the operation into the ContinuationPoint. In this case the Server shall not
allocate memory for a ContinuationPoint.

Requests will often specify multiple operations that may or may not require a ContinuationPoint. A
Server shall process the operations until it uses the maximum number of continuation points in this
response. Once that happens the Server shall return a Bad_NoContinuationPoints error for any
remaining operations. A Client can avoid this situation by sending requests with a number of
operations that do not exeed the maximum number of ContinuationPoints per Session defined for
the Service in the ServerCapabilities Object defined in OPC 10000-5.

A Client restarts an operation by passing the ContinuationPoint back to the Server. Server should
always be able to reuse the ContinuationPoint provided so Servers shall never return
Bad_NoContinuationPoints error when continuing a previously halted operation.

A ContinuationPoint is a subtype of the ByteString data type.

7.10 DataChangeTrigger

The DataChangeTrigger is an enumeration that specifies the conditions under which a data change
notification should be reported. The possible values are described in Table 134.

Table 134 — DataChangeTrigger values

Name Value | Description

STATUS 0 Report a notification ONLY if the StatusCode associated with the value changes.
See Table 183 for StatusCodes defined in this document. OPC 10000-8 specifies
additional StatusCodes that are valid in particular for device data.

STATUS VALUE 1 Report a notification if either the StatusCode or the value change. The Deadband
- filter can be used in addition for filtering value changes.

For floating point values a Server shall check for NaN and only report a single
notification with NaN when the value enters the NaN state.

When testing for changes, a Server shall treat null and empty arrays of the same
DataType as equal. This also applies to Strings and ByteStrings.

This is the default setting if no filter is set.

STATUS_VALUE_TIMESTAMP 2 Report a notification if either StatusCode, value or the SourceTimestamp change.
If a Deadband filter is specified, this trigger has the same behaviour as
STATUS_VALUE.

1.05.04 134 OPC 10000-4: Services

7.11 DataValue
7.11.1 General
The components of this parameter are defined in Table 135.

Table 135 — DataValue

Name Type Description
DataValue structure The value and associated information.
value BaseDataType The data value. If the StatusCode indicates an error then the value is to be
ignored and the Server shall set it to null.
statusCode StatusCode The StatusCode that defines the Server’s ability to access/provide the value.
The StatusCode type is defined in 7.39
sourceTimestamp UtcTime The source timestamp for the value.
sourcePicoSeconds Ulnteger Specifies the number of 10 picoseconds (1,0 e-11 seconds) intervals which shall
be added to the sourceTimestamp.
serverTimestamp UtcTime The Server timestamp for the value.
serverPicoSeconds Ulnteger Specifies the number of 10 picoseconds (1,0 e-11 seconds) intervals which shall
be added to the serverTimestamp.

7.11.2 PicoSeconds

Some applications require high resolution timestamps. The PicoSeconds fields allow applications to
specify timestamps with a resolution of 10 picoseconds. The actual size of the PicoSeconds field
depends on the resolution of the UtcTime DataType. For example, if the UtcTime DataType has a
resolution of 100 nanoseconds then the PicoSeconds field would need to store values up to 10 000
in order to provide the resolution of 10 picoseconds. The resolution of the UtcTime DataType
depends on the Mappings defined in OPC 10000-6.

7.11.3 SourceTimestamp

The sourceTimestamp is used to reflect the timestamp that was applied to a Variable value by the
data source. Once a value has been assighed a source timestamp, the source timestamp for that
value instance never changes. In this context, “value instance” refers to the value received,
independent of its actual value.

The sourceTimestamp shall be UTC time and should indicate the time of the last change of the value
or statusCode.

The sourceTimestamp should be generated as close as possible to the source of the value but the
timestamp needs to be set always by the same physical clock. In the case of redundant sources,
the clocks of the sources should be synchronized.

If the OPC UA Server receives the Variable value from another OPC UA Server, then the OPC UA
Server shall always pass the source timestamp without changes. If the source that applies the
timestamp is not available, the source timestamp is set to null. For example, if a value could not be
read because of some error during processing like invalid arguments passed in the request then the
sourceTimestamp shall be null.

In the case of a bad or uncertain status sourceTimestamp is used to reflect the time that the source
recognized the non-good status or the time the Server last tried to recover from the bad or uncertain
status.

The sourceTimestamp is only returned with a Value Attribute. For all other Attributes the returned
sourceTimestamp is set to null.

7.11.4 ServerTimestamp

The serverTimestamp is used to reflect the time that the Server received a Variable value or knew
it to be accurate.

In the case of a bad or uncertain status, serverTimestamp is used to reflect the time that the Server
received the status or that the Server last tried to recover from the bad or uncertain status.

OPC 10000-4: Services 135 1.05.04

In the case where the OPC UA Server subscribes to a value from another OPC UA Server, each
Server applies its own serverTimestamp. This is in contrast to the sourceTimestamp in which only
the originator of the data is allowed to apply the sourceTimestamp.

If the Server subscribes to the value from another Server every ten seconds and the value changes,
then the serverTimestamp is updated each time a new value is received. If the value does not
change, then new values will not be received on the Subscription. However, in the absence of errors,
the receiving Server applies a new serverTimestamp every ten seconds because not receiving a
value means that the value has not changed. Thus, the serverTimestamp reflects the time at which
the Server knew the value to be accurate.

This concept also applies to OPC UA Servers that receive values from exception-based data
sources. For example, suppose that a Server is receiving values from an exception-based device,
and that

a) the device is checking values every 0,5 seconds,

b) the connection to the device is good,

c) the device sent an update 3 minutes ago with a value of 1,234.

In this case, the Server value would be 1,234 and the serverTimestamp would be updated every 0,5
seconds after the receipt of the value.

7.11.5 StatusCode assigned to a value

The StatusCode is used to indicate the conditions under which a Variable value was generated, and
thereby can be used as an indicator of the usability of the value. The StatusCode is defined in 7.39.
Overall condition (severity)

e A StatusCode with severity Good means that the value is of good quality.

e A StatusCode with severity Uncertain means that the quality of the value is uncertain for
reasons indicated by the SubCode.

¢ A StatusCode with severity Bad means that the value is not usable for reasons indicated by
the SubCode.

Rules
e The StatusCode indicates the usability of the value. Therefore, It is required that Clients

minimally check the StatusCode Severity of all results, even if they do not check the other
fields, before accessing and using the value.

e A Server, which does not support status information, shall return a severity code of Good. It
is also acceptable for a Server to simply return a severity and a non-specific (0) SubCode.

o If the Server has no known value - in particular when Severity is BAD, it shall return a NULL
value. If the DataType of the Variable is not BaseDataType, the Severity shall be BAD if the
value is NULL. If a Variable is created and no default value or initial value is available, the
StatusCode shall be Bad_NoValue.

7.12 Diagnosticlnfo
The components of this parameter are defined in Table 136.

The Diagnosticlnfo shall not contain any security related information.

1.05.04

136 OPC 10000-4: Services

Table 136 — Diagnosticlnfo

Name

Type

Description

Diagnosticlnfo

structure

Vendor-specific diagnostic information.

namespaceUri

Int32

The symbolicld is defined within the context of a namespace. This namespace is
represented as a string and is conveyed to the Client in the stringTable
parameter of the ResponseHeader parameter defined in 7.34.

The namespaceUri parameter contains the index into the stringTable for this
string. -1 indicates that no string is specified.

The namespaceUri shall not be the standard OPC UA namespace. There are no
symboliclds provided for standard StatusCodes.

symbolicld

Int32

The symbolicld shall be used to identify a vendor-specific error or condition;
typically the result of some Server internal operation. The maximum length of
this string is 32 characters. Servers wishing to return a numeric return code
should convert the return code into a string and use this string as symbolicld
(e.g., "0xC0040007" or "-4").

This symbolic identifier string is conveyed to the Client in the stringTable
parameter of the ResponseHeader parameter defined in 7.34. The symbolicld
parameter contains the index into the stringTable for this string. -1 indicates that
no string is specified.

The symbolicld shall not contain StatusCodes. If the localizedText contains a
translation for the description of a StatusCode, the symbolicld is -1.

locale

Int32

The locale part of the vendor-specific localized text describing the symbolic id.
This localized text string is conveyed to the Client in the stringTable parameter of
the ResponseHeader parameter defined in 7.34. The locale parameter contains
the index into the stringTable for this string. -1 indicates that no string is
specified.

localizedText

Int32

A vendor-specific localized text string describes the symbolic id. The maximum
length of this text string is 256 characters.

This localized text string is conveyed to the Client in the stringTable parameter of
the ResponseHeader parameter defined in 7.34. The localizedText parameter
contains the index into the stringTable for this string. -1 indicates that no string is
specified.

The localizedText refers to the symbolicld if present or the string that describes
the standard StatusCode if the Server provides translations. If the index is -1, the
Server has no translation to return and the Client should use the invariant
StatusCode description from the specification.

additionallnfo

String

Vendor-specific diagnostic information.

innerStatusCode

StatusCode

The StatusCode from the inner operation.

Many applications will make calls into underlying systems during OPC UA
request processing. An OPC UA Server has the option of reporting the status
from the underlying system in the diagnostic info.

innerDiagnosticlnfo

DiagnosticInfo

The diagnostic info associated with the inner StatusCode.

7.13 DiscoveryConfiguration parameters

7.13.1 Overview

The DiscoveryConfiguration structure used in the RegisterServer2 Service allows Servers to provide
additional configuration parameters to Discovery Servers for registration. Table 137 defines the
current set of discovery configuration options. The ExtensibleParameter type is defined in 7.17.

Table 137 — DiscoveryConfiguration parameterTypelds

Symbolic Id

Description

MdnsDiscoveryConfiguration

Configuration parameters for mDNS discovery.

7.13.2 MdnsDiscoveryConfiguration

Table 138 defines the MdnsDiscoveryConfiguration parameter.

OPC 10000-4: Services 137 1.05.04

Table 138 — MdnsDiscoveryConfiguration

Name
MdnsDiscoveryConfiguration
mdnsServerName

Description

mDNS discovery configuration.

The name of the Server when it is announced via mDNS. See OPC 10000-
12 for the details about mDNS.

This string shall be less than 64 bytes.

If null or empty the first element of the serverNames array from
RegisteredServer is used (Text of LocalizedText and truncated to 63 bytes
if necessary).

The set of Server capabilities supported by the Server.

A Server capability is a short identifier for a feature

The set of allowed Server capabilities are defined in OPC 10000-12.

Type
structure
String

serverCapabilities [] String

7.14 EndpointDescription
The components of this parameter are defined in Table 139.

Table 139 — EndpointDescription

Name Type Description
EndpointDescription structure Describes an Endpoint for a Server.
endpointUrl String The URL for the Endpoint described.
server ApplicationDescription The description for the Server that the Endpoint belongs to.
The ApplicationDescription type is defined in 7.2.
serverCertificate Applicationinstance The Application Instance Certificate issued to the Server.
Certificate The ApplicationinstanceCertificate type is defined in 7.3.
securityMode Enum The type of security to apply to the messages.
MessageSecurityMode The type MessageSecurityMode type is defined in 7.20.
A SecureChannel may need to be created even if the securityMode is
NONE. The exact behaviour depends on the mapping used and is
described in the OPC 10000-6.
securityPolicyUri String The URI for SecurityPolicy to use when securing messages.

The set of known URIs and the SecurityPolicies associated with them are
defined in OPC 10000-7.

userldentityTokens []

UserTokenPolicy

The user identity tokens that the Server will accept.
The Client shall pass one of the UserldentityTokens in the ActivateSession
request. The UserTokenPolicy type is described in 7.42.

transportProfileUri String The URI of the Transport Profile supported by the Endpoint.
OPC 10000-7 defines URIs for the Transport Profiles.
securityLevel Byte A numeric value that indicates how secure the EndpointDescription is

compared to other EndpointDescriptions for the same Server.

A value of 0 indicates that the EndpointDescription is not recommended
and is only supported for backward compatibility.

A higher value indicates better security.

7.15 EphemeralKeyType

The EphemeralKeyType parameter is used to return an ECC EphemeralKey needed to provide
encrypted data back to the owner of the key. This Structure is used in the additionalHeader with the
AdditionalParametersType defined in 7.1. See OPC 10000-6 for a discussion of ECC
EphemeralKeys. The EphemeralKey is created based on an ECC named curve specified by a
SecurityPolicy. The SecurityPolicy to use depends on the context in which this parameter is used.

The components of this structure are defined in Table 140.

1.05.04

138 OPC 10000-4: Services

Table 140 — EphemeralKeyType

Name

Type

Description

EphemeralKeyType

Structure

Specifies an ECC ephemeral Public Key and a signature created by the
application that owns the associated Private Key.

publicKkey

ByteString

The Public Key associated with an EphemeralKey created by the sender.
It is encoded according to the rules for the ECC SecurityPolicies (see OPC
10000-7).

The size of the Public Key is specified by the current SecurityPolicyUri.

signature

ByteString

The Signature calculated using the Application Instance Certificate of the owner
of the Private Key associated with the Public Key.

The value of the Public Key field is the data used to calculate the Signature.
The SecurityPolicyUri used to generate the EphemeralKey is the
SecurityPolicyUri used to calculate the signature.

7.16 ExpandedNodeld

The components of this parameter are defined in Table 141. ExpandedNodeld allows the namespace

to be specified explicitly as a string or with an index in the Server's namespace table.

Table 141 — ExpandedNodeld

Name

Type

Description

ExpandedNodeld

structure

The Nodeld with the namespace expanded to its string representation.

serverindex

Index

Index that identifies the Server that contains the TargetNode. This Server may
be the local Server or a remote Server.
This index is the index of that Server in the local Server’s Server table. The

index of the local Server in the Server table is always 0. All remote Servers have
indexes greater than 0. The Server table is contained in the Server Object in the
AddressSpace (see OPC 10000-3 and OPC 10000-5).

The Client may read the Server table Variable to access the description of the
target Server.

namespaceUri

String

The URI of the namespace.

If this parameter is specified then the namespace index is ignored.

5.5 and OPC 10000-12 describes discovery mechanism that can be used to
resolve URIs into URLs.

namespacelndex

Uint16

The index in the Server's namespace table.
This parameter shall be 0 and is ignored in the Server if the namespace URI is
specified.

identifierType

IdType

Type of the identifier element of the Nodeld.

identifier

*

The identifier for a Node in the AddressSpace of an OPC UA Server (see
Nodeld definition in OPC 10000-3).

7.17 ExtensibleParameter

The extensible parameter types can only be extended by additional parts of OPC 10000.

The ExtensibleParameter defines a data structure with two elements. The parameterTypeld
specifies the data type encoding of the second element. Therefore the second element is specified
as “--". The ExtensibleParameter base type is defined in Table 142.

Concrete extensible parameters that are common to OPC UA are defined in Clause 7. Additional
parts of OPC 10000 can define additional extensible parameter types.

Table 142 — ExtensibleParameter base type

Name Type Description
ExtensibleParameter structure Specifies the details of an extensible parameter type.
parameterTypeld Nodeld Identifies the data type of the parameter that follows.
parameterData -- The details for the extensible parameter type.
7.18 Index

This primitive data type is a UInt32 that identifies an element of an array.

7.19 Integerld

This primitive data type is a UInt32 that is used as an identifier, such as a handle. All values, except

for O, are valid.

OPC 10000-4: Services

139 1.05.04

7.20 MessageSecurityMode

The MessageSecurityMode is an enumeration that specifies what security should be applied to
messages exchanges during a Session. The possible values are described in Table 143.

Table 143 — MessageSecurityMode values

Name Value | Description

INVALID 0 The MessageSecurityMode is invalid.
This value is the default value to avoid an accidental choice of no security is applied. This
choice will always be rejected.

NONE 1 No security is applied.

SIGN 2 All messages are signed but not encrypted.

SIGNANDENCRYPT 3 All messages are signed and encrypted.

7.21 MonitoringParameters

The components of this parameter are defined in Table 144.

1.05.04

140 OPC 10000-4: Services

Table 144 — MonitoringParameters

Name

Type

Description

MonitoringParameters

structure

Parameters that define the monitoring characteristics of a MonitoredItem.

clientHandle

Integerld

Client-supplied id of the Monitoredltem. This id is used in Notifications generated
for the list Node. The Integerld type is defined in 7.19.

samplinglInterval

Duration

The interval that defines the fastest rate at which the Monitoredltem(s) should be
accessed and evaluated. This interval is defined in milliseconds.

The value 0 indicates that the Server should use the fastest practical rate.

The value -1 indicates that the default sampling interval defined by the publishing
interval of the Subscription is requested. A different sampling interval is used if the
publishing interval is not a supported sampling interval. Any negative number is
interpreted as -1. The sampling interval is not changed if the publishing interval is
changed by a subsequent call to the ModifySubscription Service.

The Server uses this parameter to assign the Monitoredltems to a sampling interval
that it supports.

The assigned interval is provided in the revisedSamplinginterval parameter. The
Server shall always return a revisedSamplingInterval that is equal or higher than
the requested samplinginterval unless the requested samplinglnterval is higher
than the maximum sampling interval supported by the Server, in which case the
maximum sampling interval shall be returned.

filter

Extensible
Parameter
MonitoringFilter

A filter used by the Server to determine if the Monitoredltem should generate a
Notification. If not used, this parameter is null. The MonitoringFilter parameter type
is an extensible parameter type specified in 7.22. It specifies the types of filters that
can be used.

queueSize

Counter

The requested size of the Monitoredltem queue.
The following values have special meaning for data monitored items:
Value Meaning
Oorl the Server returns the default queue size which shall be 1 as
revisedQueueSize for data monitored items. The queue has a
single entry, effectively disabling queuing.
For values larger than one a first-in-first-out queue is to be used. The Server may
limit the size in revisedQueueSize. In the case of a queue overflow, the Overflow bit
(flag) in the InfoBits portion of the DataValue statusCode is set in the new value.

The following values have special meaning for event monitored items:
Value Meaning
0 the Server returns the default queue size for Event Notifications as
revisedQueueSize for event monitored items.
1 the Server returns the minimum queue size the Server requires for
Event Notifications as revisedQueueSize.
MaxUInt32 the Server returns the maximum queue size that the Server can
support for Event Notifications as revisedQueueSize.
If a Client chooses a value between the minimum and maximum settings of the
Server the value shall be returned in the revisedQueuesSize. If the requested
queuesSize is outside the minimum or maximum, the Server shall return the
corresponding bounding value.
In the case of a queue overflow, an Event of the type
EventQueueOverflowEventType is generated.

discardOldest

Boolean

Specifies the discard policy when the queue is full and a new Notification is to be
queued. It has the following values:
TRUE the oldest (first) Notification in the queue is discarded. The new
Notification is added to the end of the queue.
FALSE the last Notification added to the queue gets replaced with the new
Notification.

7.22 MonitoringFilter parameters

7.22.1 Overview

The CreateMonitoreditem Service allows specifying a filter for

each Monitoredltem. The

MonitoringFilter is an extensible parameter whose structure depends on the type of item being
monitored. The parameterTypelds are defined in Table 145. Other types can be defined by additional
parts of this multi-part specification or other specifications based on OPC UA. The
ExtensibleParameter type is defined in 7.17.

Each MonitoringFilter may have an associated MonitoringFilterResult structure which returns
revised parameters and/or error information to Clients in the response. The result structures, when
they exist, are described in the section that defines the MonitoringFilter.

OPC 10000-4: Services

141 1.05.04

Table 145 — MonitoringFilter parameterTypelds

Symbolic Id

Description

DataChangeFilter

The change in a data value that shall cause a Notification to be generated.

EventFilter

If a Notification conforms to the EventFilter, the Notification is sent to the Client.

AggregateFilter

The Aggregate and its intervals when it will be calculated and a Notification is generated.

7.22.2 DataChangeFilter

The DataChangeFilter defines the conditions under which a DataChange Notification should be
reported and, optionally, a range or band for value changes where no DataChange Notification is
generated. This range is called Deadband. The DataChangeFilter is defined in Table 146.

Table 146 — DataChangeFilter

Name Type Description
DataChangeFilter structure
trigger Enum Specifies the conditions under which a data change notification should be
DataChangeTrigger | reported. The DataChangeTrigger enumeration is defined in 7.10.
If the DataChangeFilter is not applied to the monitored item, STATUS_VALUE is
the default reporting behaviour.
deadbandType Uint32 A value that defines the Deadband type and behaviour.
Value Name Description
0 None No Deadband calculation should be applied.
1 Absolute AbsoluteDeadband (see below)
2 Percent PercentDeadband (This type is specified in OPC 10000-8).
deadbandValue Double

The Deadband is applied only if
* the trigger includes value changes and
* the deadbandType is set appropriately.

Deadband is ignored if the status of the data item changes.

DeadbandType = AbsoluteDeadband:

For this type the deadbandValue contains the absolute change in a data value
that shall cause a Notification to be generated. This parameter applies only to
Variables with any Number data type.

An exception that causes a DataChange Notification based on an
AbsoluteDeadband is determined as follows:

Generate a Notification if (absolute value of (last cached value - current
value) > AbsoluteDeadband)

The last cached value is defined as the last value pushed to the queue.

If the item is an array of values, the entire array is returned if any array element
exceeds the AbsoluteDeadband, or the size or dimension of the array changes.
DeadbandType = PercentDeadband:

This type is specified in OPC 10000-8

The DataChangeFilter does not have an associated result structure.

7.22.3 EventFilter

The EventFilter provides for the filtering and content selection of Event Subscriptions.

If an Event Notification conforms to the filter defined by the where parameter of the EventFilter, then
the Notification is sent to the Client.

Each Event Notification shall include the fields defined by the selectClauses parameter of the
EventFilter. The defined EventTypes are specified in OPC 10000-5.

The selectClauses and whereClause parameters are specified with the SimpleAttributeOperand
structure (see 7.7.4.5). This structure requires the Nodeld of an EventType supported by the Server
and a path to an InstanceDeclaration. An InstanceDeclaration is a Node which can be found by
following forward hierarchical references from the fully inherited EventType where the Node is also
the source of a HasModellingRule reference. EventTypes, InstanceDeclarations and Modelling
Rules are described completely in OPC 10000-3.

1.05.04 142 OPC 10000-4: Services

In some cases the same SimpleAttributeOperand.browsePath will apply to multiple EventTypes. If
the Client specifies the BaseEventType in the SimpleAttributeOperand.typeDefinitionld then the
Server shall evaluate the SimpleAttributeOperand.browsePath without considering the
SimpleAttributeOperand.typeDefinitionid.

Each InstanceDeclaration in the path shall be Object or Variable Node. The final Node in the path
may be an Object Node; however, Object Nodes are only available for Events which are visible in
the Server’s AddressSpace.

The SimpleAttributeOperand structure allows the Client to specify any Attribute; however, the Server
is only required to support the Value Attribute for Variable Nodes and the Nodeld Attribute for Object
Nodes. That said, profiles defined in OPC 10000-7 may make support for additional Attributes
mandatory.

The SimpleAttributeOperand structure is used in the selectClauses to select the value to return if
an Event meets the criteria specified by the whereClause. A null value is returned in the
corresponding event field in the Publish response if the selected field is not part of the Event or an
error was returned in the selectClauseResults of the EventFilterResult. If the selected field is
supported but not available at the time of the event notification, the event field shall contain a
StatusCode that indicates the reason for the unavailability. For example, the Server shall set the
event field to Bad_UserAccessDenied if the value is not accessible to the user associated with the
Session. If a Value Attribute has an uncertain or bad StatusCode associated with it then the Server
shall provide the StatusCode instead of the Value Attribute. The Server shall set the event field to
Bad_EncodingLimitsExceeded if a value exceeds the maxResponseMessageSize. The Eventld,
EventType and ReceiveTime cannot contain a StatusCode or a null value.

The Server shall validate the selectClauses when a Client creates or updates the EventFilter. Any
errors which are true for all possible Events are returned in the selectClauseResults parameter
described in Table 148. Some Servers, like aggregating Servers, may not know all possible
EventTypes at the time the EventFilter is set. These Servers do not return errors for unknown
EventTypes or BrowsePaths. The Server shall not report errors that might occur depending on the
state or the Server or type of Event. For example, a selectClauses that requests a single element
in an array would always produce an error if the DataType of the Attribute is a scalar. However,
even if the DataType is an array an error could occur if the requested index does not exist for a
particular Event, the Server would not report an error in the selectClauseResults parameter if the
latter situation existed.

The SimpleAttributeOperand is used in the whereClause to select a value which forms part of a
logical expression. These logical expressions are then used to determine whether a particular Event
should be reported to the Client. The Server shall use a null value if any error occurs when a
whereClause is evaluated for a particular Event. If a Value Attribute has an uncertain or bad
StatusCode associated with it, then the Server shall use a null value instead of the Value.

Any basic FilterOperator in Table 122 may be used in the whereClause, however, only the OfType
FilterOperator from Table 123 is permitted.

The Server shall validate the whereClause when a Client creates or updates the EventFilter. Any
structural errors in the construction of the filter and any errors which are true for all possible Events
are returned in the whereClauseResult parameter described in Table 148. Errors that could occur
depending on the state of the Server or the Event are not reported. Some Servers, like aggregating
Servers, may not know all possible EventTypes at the time the EventFilter is set. These Servers do
not return errors for unknown EventTypes or BrowsePaths.

EventQueueOverflowEventType Events are special Events which are used to provide control
information to the Client. These Events are only published to the Monitoredltems in the Subscription
that produced the EventQueueOverflowEventType Event. These Events bypass the whereClause.

Table 147 defines the EventFilter structure.

OPC 10000-4: Services 143 1.05.04

Table 147 — EventFilter structure

Name Type Description
EventFilter structure
selectClauses [] SimpleAttribute List of the values to return with each Event in a Notification. At least one valid
Operand clause shall be specified. See 7.7.4.5 for the definition of SimpleAttributeOperand.
whereClause ContentFilter Limit the Notifications to those Events that match the criteria defined by this
ContentFilter. The ContentFilter structure is described in 7.7.
The AttributeOperand structure may not be used in an EventFilter.

Table 148 defines the EventFilterResult structure. This is the MonitoringFilterResult associated with
the EventFilter MonitoringFilter.

Table 148 — EventFilterResult structure

Name Type Description
EventFilterResult structure
selectClauseResults [] StatusCode List of status codes for the elements in the select clause. The size and

order of the list matches the size and order of the elements in the
selectClauses request parameter. The Server returns null for unavailable
or rejected Event fields.

selectClauseDiagnosticinfos [] | Diagnosticlnfo A list of diagnostic information for individual elements in the select clause.
The size and order of the list matches the size and order of the elements
in the selectClauses request parameter. This list is empty if diagnostics
information was not requested in the request header or if no diagnostic
information was encountered in processing of the select clauses.
whereClauseResult ContentFilter Any results associated with the whereClause request parameter.

Result The ContentFilterResult type is defined in 7.7.2.

Table 149 defines values for the selectClauseResults parameter. Common StatusCodes are defined
in Table 183.

Table 149 — EventFilterResult Result Codes

Symbolic Id Description
Bad_TypeDefinitioninvalid See Table 183 for the description of this result code.

The typeld is not the Nodeld for BaseEventType or a subtype of it.
Bad_NodeldUnknown See Table 183 for the description of this result code.

The browsePath is specified but it will never exist in any Event.
Bad_BrowseNamelnvalid See Table 183 for the description of this result code.

The browsePath is specified and contains a null element.
Bad_Attributeldinvalid See Table 183 for the description of this result code.

The node specified by the browse path will never allow the given Attributeld to be

returned.
Bad_IndexRangelnvalid See Table 183 for the description of this result code.
Bad_TypeMismatch See Table 183 for the description of this result code.

The indexRange is valid but the value of the Attribute is never an array.

7.22.4 AggregateFilter

The AggregateFilter defines the Aggregate function that should be used to calculate the values to
be returned. See OPC 10000-13 for details on possible Aggregate functions. It specifies a startTime
of the first Aggregate to be calculated. The samplinginterval of the MonitoringParameters (see 7.21)
defines how the Server should internally sample the underlying data source. The processinglnterval
specifies the size of a time-period where the Aggregate is calculated. The queueSize from the
MonitoringAttributes specifies the number of processed values that should be kept.

The intention of the AggregateFilter is not to read historical data, the HistoryRead service should
be used for this purpose. However, it is allowed that the startTime is set to a time that is in the past
when received from the Server. The number of Aggregates to be calculated in the past should not
exceed the queueSize defined in the MonitoringAttributes since the values exceeding the queueSize
would directly be discharged and never returned to the Client.

The startTime and the processinginterval can be revised by the Server, but the startTime should
remain in the same boundary (startTime + revisedProcessinginterval * n = revisedStartTime). That
behaviour simplifies accessing historical values of the Aggregates using the same boundaries by

1.05.04 144 OPC 10000-4: Services

calling the HistoryRead service. The extensible Parameter AggregateFilterResult is used to return
the revised values for the AggregateFilter.

Some underlying systems may poll data and produce multiple samples with the same value. Other
systems may only report changes to the values. The definition for each Aggregate type explains
how to handle the two different scenarios.

The Monitoredltem only reports values for intervals that have completed when the publish timer
expires. Unused data is carried over and used to calculate a value returned in the next publish.

The ServerTimestamp for each interval shall be the time of the end of the processing interval.

The AggregateFilter is defined in Table 150.

Table 150 — AggregateFilter structure

Name Type Description
AggregateFilter structure
startTime UtcTime Beginning of period to calculate the Aggregate the first time. The size of each

period used to calculate the Aggregate is defined by the samplinginterval of
the MonitoringParameters (see 7.21).

aggregateType Nodeld The Nodeld of the AggregateFunctionType Object that indicates the
Aggregate to be used when retrieving processed data. See OPC 10000-13 for
details.
processinglinterval Duration The period be used to compute the Aggregate.
aggregateConfiguration Aggregate This parameter allows Clients to override the Aggregate configuration settings
Configuration supplied by the AggregateConfiguration Object on a per monitored item basis.

See OPC 10000-13 for more information on Aggregate configurations. If the
Server does not support the ability to override the Aggregate configuration
settings it shall return a StatusCode of Bad_AggregateListMismatch. This
structure is defined in-line with the following indented items.
useServerCapabilities Boolean If value = TRUE use Aggregate configuration settings as outlined by the
Defaults AggregateConfiguration object.

If value=FALSE use configuration settings as outlined in the following
aggregateConfiguration parameters.

Default is TRUE.

treatUncertainAsBad Boolean As described in OPC 10000-13.
percentDataBad Byte As described in OPC 10000-13.
percentDataGood Byte As described in OPC 10000-13.
useSloped Boolean As described in OPC 10000-13.

Extrapolation

The AggregateFilterResult defines the revised AggregateFilter the Server can return when an
AggregateFilter is defined for a Monitoredltem in the CreateMonitoreditems or
ModifyMonitoreditems Services. The AggregateFilterResult is defined in Table 151. This is the
MonitoringFilterResult associated with the AggregateFilter MonitoringFilter.

Table 151 — AggregateFilterResult structure

Name Type Description
AggregateFilterResult structure
revisedStartTime UtcTime The actual StartTime interval that the Server shall use.

This value is based on a number of factors, including capabilities of the
Server to access historical data. The revisedStartTime should remain in
the same boundary as the startTime (startTime + samplinginterval * n =
revisedStartTime).

revisedProcessinglInterval Duration The actual processinglnterval that the Server shall use.

The revisedProcessingInterval shall be at least twice the
revisedSamplinglnterval for the Monitoredltem.
revisedAggregateConfiguration Aggregate The actual aggregateConfiguration that the Server shall use.
Configuration The structure is defined in Table 150.

7.23 MonitoringMode

The MonitoringMode is an enumeration that specifies whether sampling and reporting are enabled
or disabled for a Monitoreditem. The value of the publishing enabled parameter for a Subscription

OPC 10000-4: Services 145 1.05.04

does not affect the value of the monitoring mode for a Monitoredltem of the Subscription. The values
of this parameter are defined in Table 152.

Table 152 — MonitoringMode values

Name Value Description

DISABLED 0 The item being monitored is not sampled or evaluated, and Notifications are not generated or
queued. Notification reporting is disabled.

SAMPLING 1 The item being monitored is sampled and evaluated, and Notifications are generated and
queued. Notification reporting is disabled.

REPORTING 2 The item being monitored is sampled and evaluated, and Notifications are generated and
queued. Notification reporting is enabled.

7.24 NodeAttributes parameters
7.24.1 Overview

The AddNodes Service allows specifying the Attributes for the Nodes to add. The NodeAttributes is
an extensible parameter whose structure depends on the type of the NodeClass being added. It
identifies the NodeClass that defines the structure of the Attributes that follow. The
parameterTypelds are defined in Table 153. The ExtensibleParameter type is defined in 7.17.

Table 153 — NodeAttributes parameterTypelds

Symbolic Id Description

ObjectAttributes Defines the Attributes for the Object NodeClass.

VariableAttributes Defines the Attributes for the Variable NodeClass.

MethodAttributes Defines the Attributes for the Method NodeClass.

ObjectTypeAttributes Defines the Attributes for the ObjectType NodeClass.

VariableTypeAttributes Defines the Attributes for the VariableType NodeClass.

ReferenceTypeAttributes Defines the Attributes for the ReferenceType NodeClass.

DataTypeAttributes Defines the Attributes for the DataType NodeClass.

ViewAttributes Defines the Attributes for the View NodeClass.

GenericAttributes Defines an id and value list for passing in any number of Attribute values. It should be used
instead of the NodeClass specific structures since it allows the handling of additional Attributes
defined in future specification versions.

Table 154 defines the bit mask used in the NodeAttributes parameters to specify which Attributes
are set by the Client.

1.05.04 146 OPC 10000-4: Services
Table 154 — Bit mask for specified Attributes
Field Bit Description
AccesslLevel 0 Indicates if the AccessLevel Attribute is set.
ArrayDimensions 1 Indicates if the ArrayDimensions Attribute is set.
Reserved 2 Reserved to be consistent with WriteMask defined in OPC 10000-3.
ContainsNoLoops 3 Indicates if the ContainsNoLoops Attribute is set.
DataType 4 Indicates if the DataType Attribute is set.
Description 5 Indicates if the Description Attribute is set.
DisplayName 6 Indicates if the DisplayName Attribute is set.
EventNotifier 7 Indicates if the EventNotifier Attribute is set.
Executable 8 Indicates if the Executable Attribute is set.
Historizing 9 Indicates if the Historizing Attribute is set.
InverseName 10 Indicates if the InverseName Attribute is set.
IsAbstract 11 Indicates if the IsAbstract Attribute is set.
MinimumSamplingInterval 12 Indicates if the MinimumSamplinginterval Attribute is set.
Reserved 13 Reserved to be consistent with WriteMask defined in OPC 10000-3.
Reserved 14 Reserved to be consistent with WriteMask defined in OPC 10000-3.
Symmetric 15 Indicates if the Symmetric Attribute is set.
UserAccessLevel 16 Indicates if the UserAccessLevel Attribute is set.
UserExecutable 17 Indicates if the UserExecutable Attribute is set.
UserWriteMask 18 Indicates if the UserWriteMask Attribute is set.
ValueRank 19 Indicates if the ValueRank Attribute is set.
WriteMask 20 Indicates if the WriteMask Attribute is set.
Value 21 Indicates if the Value Attribute is set.
Reserved 22:32 | Reserved for future use. Shall always be zero.

7.24.2 ObjectAttributes parameter
Table 155 defines the ObjectAttributes parameter.

Table 155 — ObjectAttributes

Name Type Description
ObjectAttributes structure Defines the Attributes for the Object NodeClass.
specifiedAttributes UiInt32 A bit mask that indicates which fields contain valid values.
A field shall be ignored if the corresponding bit is set to 0.
The bit values are defined in Table 154.
displayName LocalizedText See OPC 10000-3 for the description of this Attribute.
description LocalizedText See OPC 10000-3 for the description of this Attribute.
writeMask Uint32 See OPC 10000-3 for the description of this Attribute.
userWriteMask Uint32 See OPC 10000-3 for the description of this Attribute.
eventNotifier Byte See OPC 10000-3 for the description of this Attribute.

7.24.3 VariableAttributes parameter

Table 156 defines the VariableAttributes parameter.

OPC 10000-4: Services 147 1.05.04

Table 156 — VariableAttributes

Name Type Description
VariableAttributes structure Defines the Attributes for the Variable NodeClass
specifiedAttributes Ulnt32 A bit mask that indicates which fields contain valid values.
A field shall be ignored if the corresponding bit is set to 0.
The bit values are defined in Table 154.
displayName LocalizedText See OPC 10000-3 for the description of this Attribute.
description LocalizedText See OPC 10000-3 for the description of this Attribute.
writeMask UInt32 See OPC 10000-3 for the description of this Attribute.
userWriteMask Uint32 See OPC 10000-3 for the description of this Attribute.
value BaseDataType See OPC 10000-3 for the description of this Attribute.
dataType Nodeld See OPC 10000-3 for the description of this Attribute.
valueRank Int32 See OPC 10000-3 for the description of this Attribute.
arrayDimensions UInt32 [] See OPC 10000-3 for the description of this Attribute.
accesslLevel Byte See OPC 10000-3 for the description of this Attribute.
userAccessLevel Byte See OPC 10000-3 for the description of this Attribute.
minimumSamplingInterval Duration See OPC 10000-3 for the description of this Attribute.
historizing Boolean See OPC 10000-3 for the description of this Attribute.

7.24.4 MethodAttributes parameter
Table 157 defines the MethodAttributes parameter.

Table 157 — MethodAttributes

Name Type Description
MethodAttributes structure Defines the Attributes for the Method NodeClass
specifiedAttributes Uint32 A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.
The bit values are defined in Table 154.

displayName LocalizedText See OPC 10000-3 for the description of this Attribute.
description LocalizedText See OPC 10000-3 for the description of this Attribute.
writeMask UInt32 See OPC 10000-3 for the description of this Attribute.
userWriteMask Uint32 See OPC 10000-3 for the description of this Attribute.
executable Boolean See OPC 10000-3 for the description of this Attribute.
userExecutable Boolean See OPC 10000-3 for the description of this Attribute.

7.24.5 ObjectTypeAttributes parameter
Table 158 defines the ObjectTypeAttributes parameter.

Table 158 — ObjectTypeAttributes

Name Type Description
ObjectTypeAttributes structure Defines the Attributes for the ObjectType NodeClass.
specifiedAttributes Uint32 A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.
The bit values are defined in Table 154.

displayName LocalizedText See OPC 10000-3 for the description of this Attribute.
description LocalizedText See OPC 10000-3 for the description of this Attribute.
writeMask UlInt32 See OPC 10000-3 for the description of this Attribute.
userWriteMask UlInt32 See OPC 10000-3 for the description of this Attribute.
isAbstract Boolean See OPC 10000-3 for the description of this Attribute.

7.24.6 VariableTypeAttributes parameter
Table 159 defines the VariableTypeAttributes parameter.

1.05.04

148

OPC 10000-4: Services

Table 159 — VariableTypeAttributes

Name Type Description
VariableTypeAttributes structure Defines the Attributes for the VariableType NodeClass
specifiedAttributes Uint32 A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.
The bit values are defined in Table 154.

displayName

LocalizedText

See OPC 10000-3 for the description of this Attribute.

description LocalizedText See OPC 10000-3 for the description of this Attribute.
writeMask Uint32 See OPC 10000-3 for the description of this Attribute.
userWriteMask UlInt32 See OPC 10000-3 for the description of this Attribute.
value BaseDataType See OPC 10000-3 for the description of this Attribute.
dataType Nodeld See OPC 10000-3 for the description of this Attribute.
valueRank Int32 See OPC 10000-3 for the description of this Attribute.
arrayDimensions UInt32 [] See OPC 10000-3 for the description of this Attribute.
isAbstract Boolean See OPC 10000-3 for the description of this Attribute.

7.24.7 ReferenceTypeAttributes parameter
Table 160 defines the ReferenceTypeAttributes parameter.

Table 160 — ReferenceTypeAttributes

Name Type Description
ReferenceTypeAttributes structure Defines the Attributes for the ReferenceType NodeClass.
specifiedAttributes Uint32 A bit mask that indicates which fields contain valid values.
A field shall be ignored if the corresponding bit is set to 0.
The bit values are defined in Table 154.
displayName LocalizedText See OPC 10000-3 for the description of this Attribute.
description LocalizedText See OPC 10000-3 for the description of this Attribute.
writeMask UlInt32 See OPC 10000-3 for the description of this Attribute.
userWriteMask Uint32 See OPC 10000-3 for the description of this Attribute.
isAbstract Boolean See OPC 10000-3 for the description of this Attribute.
symmetric Boolean See OPC 10000-3 for the description of this Attribute.
inverseName LocalizedText See OPC 10000-3 for the description of this Attribute.

7.24.8 DataTypeAttributes parameter
Table 161 defines the DataTypeAttributes parameter.

Table 161 — DataTypeAttributes

Name Type Description
DataTypeAttributes structure Defines the Attributes for the DataType NodeClass.
specifiedAttributes Uint32 A bit mask that indicates which fields contain valid values.
A field shall be ignored if the corresponding bit is set to 0.
The bit values are defined in Table 154.
displayName LocalizedText See OPC 10000-3 for the description of this Attribute.
description LocalizedText See OPC 10000-3 for the description of this Attribute.
writeMask UlInt32 See OPC 10000-3 for the description of this Attribute.
userWriteMask UlInt32 See OPC 10000-3 for the description of this Attribute.
isAbstract Boolean See OPC 10000-3 for the description of this Attribute.

7.24.9 ViewAttributes parameter
Table 162 defines the ViewAttributes parameter.

OPC 10000-4: Services 149 1.05.04

Table 162 — ViewAttributes

Name Type Description
ViewAttributes structure Defines the Attributes for the View NodeClass.
specifiedAttributes Uint32 A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.
The bit values are defined in Table 154.

displayName LocalizedText See OPC 10000-3 for the description of this Attribute.
description LocalizedText See OPC 10000-3 for the description of this Attribute.
writeMask Uint32 See OPC 10000-3 for the description of this Attribute.
userWriteMask UlInt32 See OPC 10000-3 for the description of this Attribute.
containsNoLoops Boolean See OPC 10000-3 for the description of this Attribute.
eventNotifier Byte See OPC 10000-3 for the description of this Attribute.

7.24.10 GenericAttributes parameter

This structure should be used instead of the NodeClass specific structures defined in the other sub
sections of 7.24 since it allows the handling of additional Attributes defined in future specification
versions.

Table 163 defines the GenericAttributes parameter.

Table 163 — GenericAttributes

Name Type Description
GenericAttributes structure Defines a generic structure for passing in any number of Attributes.
specifiedAttributes Uint32 A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.
The bit values are defined in Table 154.

displayName LocalizedText See OPC 10000-3 for the description of this Attribute.
description LocalizedText See OPC 10000-3 for the description of this Attribute.
writeMask UlInt32 See OPC 10000-3 for the description of this Attribute.
userWriteMask Uint32 See OPC 10000-3 for the description of this Attribute.
attributeValues GenericAttributeValue [] Defines one attributeld and value combination.
attributeld Integerld Id of the Attribute specified. Attributelds shall be unique in the list and shall
not repeat the common Attributes in the structure.
value BaseDataType Value of the Attribute specified.

7.25 NotificationData parameters
7.25.1 Overview

The NotificationMessage structure used in the Subscription Service set allows specifying different
types of NotificationData. The NotificationData parameter is an extensible parameter whose
structure depends on the type of Notification being sent. This parameter is defined in Table 164.
Other types can be defined by additional parts of OPC 10000 or other specifications based on OPC
UA. The ExtensibleParameter type is defined in 7.17.

There may be multiple notifications for a single Monitoredltem in a single NotificationData structure.
When that happens the Server shall ensure the notifications appear in the same order that they
were queued in the Monitoredltem. These notifications do not need to appear as a contiguous block.

Table 164 — NotificationData parameterTypelds

Symbolic Id Description

DataChange Notification data parameter used for data change Notifications.

Event Notification data parameter used for Event Notifications.

StatusChange Notification data parameter used for Subscription status change Notifications.

7.25.2 DataChangeNotification parameter

Table 165 defines the NotificationData parameter used for data change notifications. This structure
contains the monitored data items that are to be reported. Monitored data items are reported under
two conditions:

1.05.04 150 OPC 10000-4: Services

a) if the MonitoringMode is set to REPORTING and a change in value or its status (represented by
its StatusCode) is detected;

b) if the MonitoringMode is set to SAMPLING, the Monitoredltem is linked to a triggering item and
the triggering item triggers.

See 5.13 for a description of the Monitoreditem Service set, and in particular the Monitoredltem
model and the Triggering model.

After creating a Monitoredltem, the current value or status of the monitored Attribute shall be queued
without applying the filter. If the current value is not available after the first sampling interval the
first Notification shall be queued after getting the initial value or status from the data source.

Table 165 — DataChangeNotification

Name Type Description
DataChangeNotification structure Data change Notification data.
monitoreditems [] Monitoredltem The list of MonitoredItems for which a change has been detected. This
Notification structure is defined in-line with the following indented items.
clientHandle Integerld Client-supplied handle for the Monitoreditem. The Integerld type is defined in
7.19
Value DataValue The StatusCode, value and timestamp(s) of the monitored Attribute depending

on the sampling and queuing configuration.

If the StatusCode indicates an error then the value is to be ignored.

If not every detected change has been returned since the Server's queue
buffer for the MonitoredItem reached its limit and had to purge out data and
the size of the queue is larger than one, the Overflow bit in the DataValue
InfoBits of the statusCode is set.

DataValue is a common type defined in 7.11.

diagnosticinfos [] Diagnosticinfo List of diagnostic information. The size and order of this list matches the size
and order of the monitoredltems parameter. There is one entry in this list for
each Node contained in the monitoreditems parameter. This list is empty if
diagnostics information was not requested or is not available for any of the
MonitoredItems. Diagnosticlnfo is a common type defined in 7.12.

7.25.3 EventNotificationList parameter

Table 166 defines the NotificationData parameter used for Event notifications.

The EventNotificationList defines a table structure that is used to return Event fields to a Client
Subscription. The structure is in the form of a table consisting of one or more Events, each

containing an array of one or more fields. The selection and order of the fields returned for each
Event is identical to the selected parameter of the EventFilter.

Table 166 — EventNotificationList

Name Type Description
EventNotificationList structure Event Notification data.
events [] EventFieldList The list of Events being delivered. This structure is defined in-line with the
following indented items.
clientHandle Integerld Client-supplied handle for the Monitoreditem. The Integerld type is defined in
7.19.
eventFields [] BaseDataType List of selected Event fields. This shall be a one to one match with the fields
selected in the EventFilter.
7.22.3 specifies how the Server shall deal with error conditions.

7.25.4 StatusChangeNotification parameter
Table 167 defines the NotificationData parameter used for a StatusChangeNotification.

The StatusChangeNotification informs the Client about a change in the status of a Subscription.

OPC 10000-4: Services

151 1.05.04

Table 167 — StatusChangeNotification

Name Type Description

StatusChangeNotification structure Event Notification data
status StatusCode The StatusCode that indicates the status change.
diagnosticinfo DiagnosticInfo Diagnostic information for the status change

7.26 NotificationMessage

The components of this parameter are defined in Table 168.

Table 168 — NotificationMessage

Name Type Description
NotificationMessage structure The Message that contains one or more Notifications.
sequenceNumber Counter The sequence number of the NotificationMessage.
publishTime UtcTime The time that this Message was sent to the Client. If this Message is
retransmitted to the Client, this parameter contains the time it was first
transmitted to the Client.
notificationData [] Extensible The list of NotificationData structures.
Parameter The NotificationData parameter type is an extensible parameter type specified in
NotificationData 7.25. It specifies the types of Notifications that can be sent. The

ExtensibleParameter type is specified in 7.17.

Notifications of the same type should be grouped into one NotificationData
element. If a Subscription contains Monitoredltems for events and data, this
array should have not more than 2 elements. If the Subscription contains
Monitoredltems only for data or only for events, the array size should always be
one for this Subscription.

7.27 NumericRange

This parameter is defined in Table 169. A formal BNF definition of the numeric range can be found
in Clause A.3.

The syntax for the string contains one of the following two constructs. The first construct is the string
representation of an individual integer. For example, “6” is valid, but “6,0” and “3,2” are not. The
minimum and maximum values that can be expressed are defined by the use of this parameter and
not by this parameter type definition. The second construct is a range represented by two integers
separated by the colon (“:”) character. The first integer shall always have a lower value than the
second. For example, “5:7” is valid, while “7:5” and “5:5” are not. The minimum and maximum values
that can be expressed by these integers are defined by the use of this parameter, and not by this
parameter type definition. No other characters, including white-space characters, are permitted.

Multi-dimensional arrays can be indexed by specifying a range for each dimension separated by a
‘,’. For example, a 2x2 block in a 4x4 matrix could be selected with the range “1:2,0:1”. A single
element in a multi-dimensional array can be selected by specifying a single number instead of a
range. For example, “1,1” selects the [1,1] element in a two dimensional array.

Dimensions are specified in the order that they appear in the ArrayDimensions Attribute. All
dimensions shall be specified for a NumericRange to be valid.

All indexes start with 0. The maximum value for any index is one less than the length of the
dimension.

When reading a value and any of the lower bounds of the indexes is out of range the Server shall
return a Bad_IndexRangeNoData. If any of the upper bounds of the indexes is out of range, the
Server shall return partial results.

Bad_IndexRangelnvalid is only used for invalid syntax of the NumericRange. All other invalid
requests with a valid syntax shall result in Bad_IndexRangeNoData.

When writing a value, the size of the array shall match the size specified by the NumericRange. The
Server shall return an error if it cannot write all elements specified by the Client.

The NumericRange can also be used to specify substrings for ByteString and String values. Arrays
of ByteString and String values are treated as two dimensional arrays where the final index specifies

1.05.04 152 OPC 10000-4: Services

the substring range within the ByteString or String value. The entire ByteString or String value is
selected if the final index is omitted.

Table 169 — NumericRange

Name Type Description

NumericRange String A number or a numeric range.
A null or empty string indicates that this parameter is not used.

7.28 QueryDataSet
The components of this parameter are defined in Table 170.

Table 170 — QueryDataSet

Name Type Description
QueryDataSet structure Data related to a Node returned in a Query response.
nodeld ExpandedNodeld The Nodeld for this Node description.
typeDefinitionNode ExpandedNodeld The Nodeld for the type definition for this Node description.
values [] BaseDataType Values for the selected Attributes. The order of returned items matches the

order of the requested items. There is an entry for each requested item for the
given TypeDefinitionNode that matches the selected instance, this includes any
related nodes that were specified using a relative path from the selected
instance’s TypeDefinitionNode. If no values where found for a given requested
item a null value is returned for that item. If a value has a bad status, the
StatusCode is returned instead of the value. If multiple values exist for a
requested item then an array of values is returned. If the requested item is a
reference then a ReferenceDescription or array of ReferenceDescription is
returned for that item.

If the QueryDataSet is returned in a QueryNext to continue a list of
ReferenceDescription, the values array will have the same size but the other
values already returned are null.

7.29 ReadValueld
The components of this parameter are defined in Table 171.

OPC 10000-4: Services

153 1.05.04

Table 171 — ReadValueld

Name Type Description
ReadValueld structure Identifier for an item to read or to monitor.
nodeld Nodeld Nodeld of a Node.
attributeld Integerld Id of the Attribute. This shall be a valid Attribute id. The Integerld is defined in
7.19. The Integerlds for the Attributes are defined in OPC 10000-6.
indexRange NumericRange This parameter is used to identify a single element of an array, or a single range

of indexes for arrays. The array in this context includes String and ByteString. If
a range of elements is specified, the values are returned as a composite. The
first element is identified by index 0 (zero). The NumericRange type is defined in
7.27.

This parameter is null or empty if the specified Attribute is not an array.
However, if the specified Attribute is an array, and this parameter is null or
empty, then all elements are to be included in the range.

dataEncoding

QualifiedName

This parameter specifies the BrowseName of the DataTypeEncoding that the
Server should use when returning the Value Attribute of a Variable. It is an error
to specify this parameter for other Attributes.

This parameter only applies if the DataType of the Variable is a subtype of
Structure. It is an error to specify this parameter if the DataType of the Variable
is not a subtype of Structure.

A Client can discover what DataTypeEncodings are available by following the
HasEncoding Reference from the DataType Node for a Variable.

OPC UA defines BrowseNames which Servers shall recognize even if the
DataType Nodes are not visible in the Server AddressSpace. These
BrowseNames are:

Default Binary The default or native binary (or non-XML) encoding.
Default XML The default XML encoding.
Default JSON The default JSON encoding

Each DataType shall support at least one of these encodings. DataTypes that do
not have a true binary encoding (e.g. they only have a non-XML text encoding)
should use the Default Binary name to identify the encoding that is considered to
be the default non-XML encoding. DataTypes that support at least one XML-
based encoding shall identify one of the encodings as the Default XML
encoding. Other standards bodies may define other well-known data encodings
that could be supported.

If this parameter is null or empty then the Server shall choose the default
according to what Message encoding (see OPC 10000-6) is used for the
Session. If the Server does not support the encoding that matches the Message
encoding then the Server shall choose the default encoding that it does support.

7.30 ReferenceDescription

The components of this parameter are defined in Table 172.

Table 172 — ReferenceDescription

Name Type Description
ReferenceDescription structure Reference parameters returned for the Browse Service.
referenceTypeld Nodeld Nodeld of the ReferenceType that defines the Reference.
isForward Boolean If the value is TRUE, the Server followed a forward Reference. If the value is
FALSE, the Server followed an inverse Reference.
nodeld Expanded Nodeld of the TargetNode as assigned by the Server identified by the Server
Nodeld index. The ExpandedNodeld type is defined in 7.16.
If the serverindex indicates that the TargetNode is a remote Node, then the
nodeld shall contain the absolute namespace URI. If the TargetNode is a local
Node the nodeld shall contain the nhamespace index.
browseName” QualifiedName The BrowseName of the TargetNode.
displayName LocalizedText The DisplayName of the TargetNode.
nodeClass’ NodeClass NodeClass of the TargetNode.
typeDefinitionl Expanded Type definition Nodeld of the TargetNode. Type definitions are only available for
Nodeld the NodeClasses Object and Variable. For all other NodeClasses a null Nodeld

shall be returned.

1) If the Server index in the ExpandedNodeld indicates that the TargetNode is a remote Node, then the browseName, nodeClass
and typeDefinition may be null or empty. If they are not null or empty, they might not be up to date because the local Server
might not continuously monitor the remote Server for changes. The displayName shall be provided for remote Nodes.

1.05.04 154 OPC 10000-4: Services

7.31 RelativePath
The components of this parameter are defined in Table 173.

Table 173 — RelativePath

Name

Type

Description

RelativePath

structure

Defines a sequence of References and BrowseNames to follow.

elements []

RelativePath
Element

A sequence of References and BrowseNames to follow. This structure is defined
in-line with the following indented items.

Each element in the sequence is processed by finding the targets and then using
those targets as the starting nodes for the next element. The targets of the final
element are the target of the RelativePath.

referenceTypeld

Nodeld

The type of reference to follow from the current node.

The current path cannot be followed any further if the referenceTypeld is not
available on the Node instance.

If the referenceTypeld is null then all References are included and the parameter
includeSubtypes is ignored. This is equal to use the base References
ReferenceType and includeSubtypes set to TRUE.

isInverse

Boolean

Only inverse references shall be followed if this value is TRUE.
Only forward references shall be followed if this value is FALSE.

includeSubtypes

Boolean

Indicates whether subtypes of the ReferenceType should be followed. Subtypes
are included if this value is TRUE.

targetName

QualifiedName

The BrowseName of the target node.

The final element may have an empty targetName. In this situation all targets of
the references identified by the referenceTypeld are the targets of the
RelativePath.

The targetName shall be specified for all other elements.

The current path cannot be followed any further if no targets with the specified
BrowseName exist.

A RelativePath can be applied to any starting Node. The targets of the RelativePath are the set of
Nodes that are found by sequentially following the elements in RelativePath.

A text format for the RelativePath can be found in Clause A.2. This format is used in examples that
explain the Services that make use of the RelativePath structure.

OPC 10000-4: Services

7.32 RegisteredServer

155 1.05.04

The components of this parameter are defined in Table 174.

Table 174 — RegisteredServer

Name Type Description
RegisteredServer structure The Server to register.
serverUri String The globally unique identifier for the Server instance. The serverUri matches the
applicationUri from the ApplicationDescription defined in 7.2.
productUri String The globally unique identifier for the Server product.

serverNames []

LocalizedText

A list of localized descriptive names for the Server.
The list shall have at least one valid entry.

serverType Enum The type of application.
ApplicationType The enumeration values are defined in Table 113.

The value “CLIENT” (The application is a Client) is not allowed. The Service
result shall be Bad_InvalidArgument in this case.

gatewayServerUri String The URI of the Gateway Server associated with the discoveryUrls.
This value is only specified by Gateway Servers that wish to register the Servers
that they provide access to.
For Servers that do not act as a Gateway Server this parameter shall be null or
empty.

discoveryUrls [] String A list of DiscoveryEndpoints for the Server.
The list shall have at least one valid entry.

semaphoreFilePath String The path to the semaphore file used to identify an automatically-launched Server
instance; Manually-launched Servers will not use this parameter.
If a Semaphore file is provided, the isOnline flag is ignored.
If a Semaphore file is provided and exists, the LocalDiscoveryServer shall save
the registration information in a persistent data store that it reads whenever the
LocalDiscoveryServer starts.
If a Semaphore file is specified but does not exist the Discovery Server shall
remove the registration from any persistent data store.
If the Server has registered with a semaphoreFilePath, the Discovery Server
shall check that this file exists before returning the ApplicationDescription to the
Client.
If the Server did not register with a semaphoreFilePath (it is null or empty) then
the Discovery Server does not attempt to verify the existence of the file before
returning the ApplicationDescription to the Client.

isOnline Boolean True if the Server is currently able to accept connections from Clients. The

Discovery Server shall return ApplicationDescriptions to the Client.

The Server is expected to periodically re-register with the Discovery Server.
False if the Server is currently unable to accept connections from Clients. The
Discovery Server shall NOT return ApplicationDescriptions to the Client.

This parameter is ignored if a semaphoreFilePath is provided.

7.33 RequestHeader

The components of this parameter are defined in Table 175.

1.05.04 156 OPC 10000-4: Services

Table 175 — RequestHeader

OPC 10000-4: Services 157 1.05.04

Name Type Description
RequestHeader structure Common parameters for all requests submitted on a Session.
authenticationToken | Session The secret Session identifier used to verify that the request is associated with
AuthenticationToken | the Session. The SessionAuthenticationToken type is defined in 7.36.
timestamp UtcTime The time the Client sent the request. The parameter is only used for diagnostic
and logging purposes in the Server.
requestHandle Integerld A requestHandle associated with the request. This Client defined handle can be
used to cancel the request. It is also returned in the response.
returnDiagnostics UiInt32 A bit mask that identifies the types of vendor-specific diagnostics to be returned

in diagnosticlnfo response parameters.
The value of this parameter may consist of zero, one or more of the following
values. No value indicates that diagnostics are not to be returned.

Bit Value Diagnostics to return

0x0000 0001 ServicelLevel / Symbolicld

0x0000 0002 ServicelLevel / LocalizedText
0x0000 0004 ServicelLevel / Additionallnfo
0x0000 0008 ServicelLevel / Inner StatusCode
0x0000 0010 ServiceLevel / Inner Diagnostics
0x0000 0020 OperationLevel / Symbolicld
0x0000 0040 OperationLevel / LocalizedText
0x0000 0080 OperationLevel / Additionallnfo
0x0000 0100 OperationLevel / Inner StatusCode
0x0000 0200 OperationLevel / Inner Diagnostics

Each of these values is composed of two components, level and type, as

described below. If none are requested, as indicated by a 0 value, or if no
diagnostic information was encountered in processing of the request, then
diagnostics information is not returned.

Level:

ServicelLevel return diagnostics in the diagnosticinfo of the Service.

OperationLevel return diagnostics in the diagnosticinfo defined for
individual operations requested in the Service.

Type:

Symbolicld return a namespace-qualified, symbolic identifier for
an error or condition. The maximum length of this
identifier is 32 characters.

LocalizedText return up to 256 bytes of localized text that describes
the symbolic id.

Additionallnfo return a byte string that contains additional diagnostic

information, such as a memory image. The format of
this byte string is vendor-specific, and may depend on
the type of error or condition encountered.
InnerStatusCode return the inner StatusCode associated with the
operation or Service.

InnerDiagnostics return the inner diagnostic info associated with the
operation or Service. The contents of the inner
diagnostic info structure are determined by other bits
in the mask. Note that setting this bit could cause
multiple levels of nested diagnostic info structures to
be returned.

auditEntryld String An identifier that identifies the Client’s security audit log entry associated with
this request. An empty string value means that this parameter is not used.

The auditEntryld typically contains who initiated the action and from where it was
initiated. The auditEntryld is included in the AuditEvent to allow human readers
to correlate an Event with the initiating action.

More details of the Audit mechanisms are defined in 6.5 and in OPC 10000-3.
timeoutHint Uint32 This timeout in milliseconds is used in the Client side Communication Stack to
set the timeout on a per-call base.

For a Server this timeout is only a hint and can be used to cancel long running
operations to free resources. If the Server detects a timeout, he can cancel the
operation by sending the Service result Bad_Timeout. The Server should wait at
minimum the timeout after he received the request before cancelling the
operation. The Server shall check the timeoutHint parameter of a Publish
request before processing a Publish response. If the request timed out, a
Bad_Timeout Service result is sent and another Publish request is used.

The value of 0 indicates no timeout.

1.05.04 158 OPC 10000-4: Services

additionalHeader Extensible If additional header parameters are needed, they shall be passed using the
Parameter AdditionalParametersType defined in 7.1.
AdditionalHeader Applications that do not understand the header should ignore it.

7.34 ResponseHeader
The components of this parameter are defined in Table 176.

Table 176 — ResponseHeader

Name Type Description
ResponseHeader structure Common parameters for all responses.
timestamp UtcTime The time the Server sent the response.
requestHandle Integerld The requestHandle given by the Client to the request.
serviceResult StatusCode OPC UA-defined result of the Service invocation. The StatusCode type is
defined in 7.39.
serviceDiagnostics DiagnosticInfo Diagnostic information for the Service invocation. This parameter is empty if

diagnostics information was not requested in the request header. The
DiagnosticInfo type is defined in 7.12.

stringTable [] String There is one string in this list for each unigue namespace, symbolic identifier,
and localized text string contained in all of the diagnostics information
parameters contained in the response (see 7.12). Each is identified within this
table by its zero-based index.

additionalHeader Extensible If additional header parameters are needed, they shall be passed using the
Parameter AdditionalParametersType defined in 7.1.

AdditionalHeader | Applications that do not understand the header should ignore it.

7.35 ServiceFault

The components of this parameter are defined in Table 177.

The ServiceFault parameter shall be returned instead of the Service response message when the
serviceResult is a StatusCode with Severity Bad. The requestHandle in the ResponseHeader should
be set to what was provided in the RequestHeader even if these values were not valid. The level of
diagnostics returned in the ResponseHeader is specified by the returnDiagnostics parameter in the
RequestHeader.

The exact use of this parameter depends on the mappings defined in OPC 10000-6.

Table 177 — ServiceFault

Name Type Description
ServiceFault structure An error response sent when a service level error occurs.
responseHeader ResponseHeader Common response parameters (see 7.34 for ResponseHeader definition).

7.36 SessionAuthenticationToken

The SessionAuthenticationToken type is an opaque identifier that is used to identify requests
associated with a particular Session. This identifier is used in conjunction with the SecureChannelld
or Client Certificate to authenticate incoming messages. It is the secret form of the sessionld for
internal use in the Client and Server Applications. The SessionAuthenticationToken is a subtype of
Nodeld.

A Server returns a SessionAuthenticationToken in the CreateSession response. The Client then
sends this value with every request which allows the Server to verify that the sender of the request
is the same as the sender of the original CreateSession request.

For the purposes of this discussion, a Server consists of application (code) and a Communication
Stack as shown in Figure 37. The security provided by the SessionAuthenticationToken depends on
a trust relationship between the Server application and the Communication Stack. The
Communication Stack shall be able to verify the sender of the message and it uses the
SecureChannelld or the Client Certificate to identify the sender to the Server. In these cases, the
SessionAuthenticationToken is a Nodeld with a UInt32 identifier that allows the Server to distinguish
between different Sessions created by the same sender.

OPC 10000-4: Services 159 1.05.04

Application

Server Communication

Figure 37 — Logical layers of a Server

In some cases, the application and the Communication Stack cannot exchange information at
runtime which means the application will not have access to the SecureChannelld or the Certificate
used to create the SecureChannel. In these cases the application shall create a random ByteString
value that is at least 32 bytes long. This value shall be kept secret and shall always be exchanged
over a SecureChannel with encryption enabled. The Administrator is responsible for ensuring that
encryption is enabled. In this cases, the SessionAuthenticationToken is a Nodeld with a ByteString
identifier. The Profiles in OPC 10000-7 may define additional requirements for a ByteString
SessionAuthenticationToken.

Client and Server applications should be written to be independent of the SecureChannel
implementation. Therefore, they should always treat the SessionAuthenticationToken as secret
information even if it is not required when using some SecureChannel implementations.

Figure 38 illustrates the information exchanged between the Client, the Server and the Server
Communication Stack when the Client obtains a SessionAuthenticationToken. In this figure the
GetSecureChannellnfo step represents an APl that depends on the Communication Stack
implementation.

Client Server Stack Server

OpenSecureChannel

« Client Certificate

OpenSecureChannel Response

« SecureChannelld

CreateSession

« Client Certificate
Request information about SecureChannel

« Endpoint Url

« Security Policy

« Security Mode

« Secure Channel Id

CreateSession Response « Client Certificate

« Sessionld
« AuthenticationToken

ActivateSession

« AuthenticationToken
GetSecureChannellnfo

« Secure Channel Id
« Client Certificate

ActivateSession Response

Figure 38 — Obtaining a SessionAuthenticationToken

The SessionAuthenticationToken is a subtype of the Nodeld data type; however, it is never used to
identify a Node in the AddressSpace. Servers may assign a value to the Namespacelndex; however,
its meaning is Server specific.

7.37 SignatureData

The components of this parameter are defined in Table 178.

1.05.04 160 OPC 10000-4: Services

Table 178 — SignatureData

Name Type Description
SignatureData structure Contains a digital signature created with a Certificate.
algorithm String A string containing the URI of the algorithm.
The URI string values are defined as part of the security profiles specified in
OPC 10000-7.
sighature ByteString This is a signhature generated with the private key associated with a Certificate.

7.38 SignedSoftwareCertificate

Note Details on SoftwareCertificates will be defined in a future version of this document.
Table 179 specifies SignedSoftwareCertificate Structure.

Table 179 — SignedSoftwareCertificate

Name Type Description

SignedSoftwareCertificate structure
certificateData ByteString | The certificate data serialized as a ByteString.
signature ByteString | The signature for the certificateData.

7.39 StatusCode
7.39.1 General

A StatusCode in OPC UA is numerical value that is used to report the outcome of an operation
performed by an OPC UA Server. This code may have associated diagnostic information that
describes the status in more detail; however, the code by itself is intended to provide Client
applications with enough information to make decisions on how to process the results of an OPC
UA Service.

The StatusCode is a 32-bit unsigned integer. The top 16 bits represent the numeric value of the
code that shall be used for detecting specific errors or conditions. The bottom 16 bits are bit flags
that contain additional information but do not affect the meaning of the StatusCode.

All OPC UA Clients shall always check the StatusCode associated with a result before using it.
Results that have an uncertain/warning status associated with them shall be used with care since
these results might not be valid in all situations. Results with a bad/failed status shall never be used.

OPC UA Servers should return good/success StatusCodes if the operation completed normally and
the result is always valid. Different StatusCode values can provide additional information to the
Client.

OPC UA Servers should use uncertain/warning StatusCodes if they could not complete the operation
in the manner requested by the Client, however, the operation did not fail entirely.

The list of StatusCodes is managed by OPC UA. The complete list of StatusCodes is defined in OPC
10000-6. Servers shall not define their own StatusCodes. OPC UA companion working groups may
request additional StatusCodes from the OPC Foundation to be added to the list in OPC 10000-6.

The exact bit assignments are shown in Table 180.

OPC 10000-4: Services

161 1.05.04

Table 180 — StatusCode bit assignments

Field

Bit Range

Description

Severity

30:31

Indicates whether the StatusCode represents a good, bad or uncertain condition. These bits
have the following meanings:
Good 00 Indicates that the operation was successful and the associated
Success results may be used.
Uncertain 01 Indicates that the operation was partially successful and that
Warning associated results might not be suitable for some purposes.
Bad Failure 10 Indicates that the operation failed and any associated results cannot
be used.
Reserved 11 Reserved for future use. All Clients should treat a StatusCode with
this severity as “Bad”.

Reserved

29:29

Reserved for use in OPC UA application specific APIs. This bit shall always be zero on the
wire but may be used by OPC UA application specific APIs for API specific status codes.

Reserved

28:28

Reserved for future use. Shall always be zero.

SubCode

16:27

The code is a numeric value assigned to represent different conditions. Each code has a
symbolic name and a numeric value. All descriptions in the OPC UA specification refer to the
symbolic name. OPC 10000-6 maps the symbolic names onto a numeric value.

StructureChanged

15:15

Indicates that the structure of the associated data value has changed since the last
Notification. Clients should not process the data value unless they re-read the metadata.
Servers shall set this bit if the DataTypeDefinition of the DataType used for a Variable
changes.

This bit is provided to warn Clients that parse complex data values that their parsing routines
could fail because the serialized form of the data value has changed.

This bit has meaning only for StatusCodes returned as part of a data change Notification or
the HistoryRead. StatusCodes used in other contexts shall always set this bit to zero.

The bit is set on one data change Notification per Monitoredltem that samples values at the
time the structure change happened. If the data change notification with the bit set is deleted
because of a queue overflow, the bit shall be set on the next data change natification in the
queue.

SemanticsChanged

14:14

Indicates that the semantics of the associated data value have changed. Clients should not
process the data value until they re-read the metadata associated with the Variable.

Servers should set this bit if the metadata has changed in way that could cause application
errors if the Client does not re-read the metadata. For example, a change to the engineering
units could create problems if the Client uses the value to perform calculations.

OPC 10000-8 defines the conditions where a Server shall set this bit for a DA Variable. Other
specifications may define additional conditions. A Server may define other conditions that
cause this bit to be set.

This bit has meaning only for StatusCodes returned as part of a data change Notification or
the HistoryRead. StatusCodes used in other contexts shall always set this bit to zero.

The bit is set on one data change Notification per Monitoredltem that samples values at the
time the semantic change happened. If the data change natification with the bit set is deleted
because of a queue overflow, the bit shall be set on the next data change notification in the
queue.

Reserved

12:13

Reserved for future use. Shall always be zero.

InfoType

10:11

The type of information contained in the info bits. These bits have the following meanings:
NotUsed 00 The info bits are not used and shall be set to zero.
DataValue 01 The StatusCode and its info bits are associated with a data valug|
returned from the Server. The info bits are defined in Table
181.
Reserved 1X Reserved for future use. The info bits shall be ignored.

InfoBits

0:9

Additional information bits that qualify the StatusCode.
The structure of these bits depends on the Info Type field.

Table 181 describes the structure of the InfoBits when the Info Type is set to DataValue (01).

1.05.04 162 OPC 10000-4: Services

Table 181 — DataValue InfoBits

Info Type Bit Range Description

LimitBits 8:9 The limit bits associated with the data value. The limits bits have the following meanings:
Limit Bits Description
None 00 The value is free to change.
Low 01 The value is at the lower limit for the data source.
High 10 The value is at the higher limit for the data source.
Constant 11 The value is constant and cannot change.

Overflow 7 This bit shall only be set if the Monitoredltem queue size is greater than 1.

If this bit is set, not every detected change has been returned since the Server’s queue buffer for
the Monitoredltem reached its limit and had to purge out data.

Reserved 5:6 Reserved for future use. Shall always be zero.

HistorianBits 0:4 These bits are set only when reading historical data. They indicate where the data value came

from and provide information that affects how the Client uses the data value. The historian bits
have the following meaning:

Raw XXX00 A raw data value.

Calculated XXX01 A data value which was calculated.

Interpolated XXX10 A data value which was interpolated.

Reserved XXX11 Undefined.

Partial XX1IXX A data value which was calculated with an incomplete interval.
Extra Data XIXXX A raw data value that hides other data at the same timestamp.

Multi Value IXXXX Multiple values match the Aggregate criteria (i.e. multiple
minimum values at different timestamps within the same
interval).

OPC 10000-11 describes how these bits are used in more detail.

7.39.2 Common StatusCodes

Table 182 defines the common StatusCodes for all Service results used in more than one service.
It does not provide a complete list. These StatusCodes may also be used as operation level result
code. OPC 10000-6 maps the symbolic names to a numeric value and provides a complete list of
StatusCodes including codes defines in other parts.

OPC 10000-4: Services 163 1.05.04

Table 182 — Common Service Result Codes

1.05.04 164 OPC 10000-4: Services
Symbolic Id Description
Good The operation was successful.

Good_CompletesAsynchronously

The processing will complete asynchronously.

Good_SubscriptionTransferred

The Subscription was transferred to another session.

Bad_CertificateHostNamelnvalid

The HostName used to connect to a Server does not match a HostName in the
Certificate.

Bad_CertificateChainincomplete

The Certificate chain is incomplete.

Bad_CertificatelssuerRevocationUnknown

It was not possible to determine if the Issuer Certificate has been revoked.

Bad_ CertificatelssuerUseNotAllowed

The Issuer Certificate may not be used for the requested operation.

Bad_CertificatelssuerTimelnvalid

An Issuer Certificate has expired or is not yet valid.

Bad_CertificatelssuerRevoked

The Issuer Certificate has been revoked.

Bad_Certificatelnvalid

The Certificate provided as a parameter is not valid.

Bad_CertificateRevocationUnknown

It was not possible to determine if the Certificate has been revoked.

Bad_CertificateRevoked

The Certificate has been revoked.

Bad_CertificateTimelnvalid

The Certificate has expired or is not yet valid.

Bad_CertificateUrilnvalid

The URI specified in the ApplicationDescription does not match the URI in the
Certificate.

Bad_CertificateUntrusted

The Certificate is not trusted.

Bad_CertificateUseNotAllowed

The Certificate may not be used for the requested operation.

Bad_CommunicationError

A low level communication error occurred.

Bad_DataTypeldUnknown

The ExtensionObject cannot be (de)serialized because the data type id is not
recognized.

Bad_DecodingError

Decoding halted because of invalid data in the stream.

Bad_EncodingError

Encoding halted because of invalid data in the objects being serialized.

Bad_EncodingLimitsExceeded

The message encoding/decoding limits imposed by the Communication Stack have
been exceeded.

Bad_ldentityTokenlnvalid

The user identity token is not valid.

Bad_I|dentityTokenRejected

The user identity token is valid but the Server has rejected it.

Bad_InternalError

An internal error occurred as a result of a programming or configuration error.

Bad_InvalidArgument

One or more arguments are invalid.

Each service defines parameter-specific StatusCodes and these StatusCodes shall
be used instead of this general error code. This error code shall be used only by
the Communication Stack and in services where it is defined in the list of valid
StatusCodes for the service.

Bad_InvalidState

The operation cannot be completed because the object is closed, uninitialized or in
some other invalid state.

Bad_InvalidTimestamp

The timestamp is outside the range allowed by the Server.

Bad_LicenseExpired

The UA Server requires a license to operate in general or to perform a service or
operation, but existing license is expired

Bad_LicenseLimitsExceeded

The UA Server has limits on number of allowed operations / objects, based on
installed licenses, and these limits where exceeded.

Bad_LicenseNotAvailable

The UA Server does not have a license which is required to operate in general or to
perform a service or operation.

Bad_Noncelnvalid

The nonce does appear to be not a random value or it is not the correct length.

Bad_NothingToDo

No processing could be done because there was nothing to do.
For Service level results the code is used if the Client passed a list of operations
with no elements.

Bad_OutOfMemory

Not enough memory to complete the operation.

Bad_RequestCancelledByClient

The request was cancelled by the Client.

Bad_RequestToolarge

The request message size exceeds limits set by the Server.

Bad_ResponseToolarge

The response message size exceeds limits set by the Client or Server.

Bad_RequestHeaderlInvalid

The header for the request is missing or invalid.

Bad_ResourceUnavailable

An operating system resource is not available.

Bad_SecureChannelldinvalid

The specified secure channel is no longer valid.

Bad_SecurityChecksFailed

An error occurred while verifying security.

Bad_SecurityPolicyRejected

The security policy does not meet the requirements set by the Server.

Bad_ServerHalted

The Server has stopped and cannot process any requests.

Bad_ServerNotConnected

The operation could not complete because the Client is not connected to the
Server.

Bad_ServerTooBusy

The Server does not have the resources to process the request at this time.
This can be caused by a general overload of the Server or an overload by the
Client that receives the result code.

Bad_ServerUrilnvalid

The Server URI is not valid.

Bad_ServiceUnsupported

The Server does not support the requested service.

Bad_Sessionldinvalid

The Session id is not valid.

Bad_SessionClosed

The Session was closed by the Client.

Bad_SessionNotActivated

The Session cannot be used because ActivateSession has not been called.

OPC 10000-4: Services

165 1.05.04

Symbolic Id

Description

Bad_Shutdown

The operation was cancelled because the application is shutting down.

Bad_Subscriptionldinvalid

The Subscription id is not valid.
The Subscription id is not known or is not valid in the context of the Session used to
call the Subscription related Service.

Bad_Timeout

The operation timed out.

Bad_TimestampsToReturninvalid

The timestamps to return parameter is invalid.

Bad_TooManyOperations

The request could not be processed because it specified too many operations.

Bad_UnexpectedError

An unexpected error occurred.

Bad_UnknownResponse

An unrecognized response was received from the Server.

Bad_UserAccessDenied

User does not have permission to perform the requested operation.

Bad_ViewldUnknown

The view id does not refer to a valid view Node.

Bad_ViewTimestamplnvalid

The view timestamp is not available or not supported.

Bad_ViewParameterMismatchinvalid

The view parameters are not consistent with each other.

Bad_ViewVersioninvalid

The view version is not available or not supported.

Table 183 defines the common StatusCodes for all operation level results used in more than one
service. It does not provide a complete list. OPC 10000-6 maps the symbolic names to a numeric
value and provides a complete list of StatusCodes including codes defines in other parts. The
common Service result codes can be also contained in the operation level.

Table 183 — Common Operation Level Result Codes

Symbolic Id

Description

Good_Clamped

The value written was accepted but was clamped.

Good_Overload

Sampling has slowed down due to resource limitations.

Uncertain

The value is uncertain but no specific reason is known.

Bad

The value is bad but no specific reason is known.

Bad_Attributeldinvalid

The attribute is not supported for the specified node.

Bad_BrowseDirectionlnvalid

The browse direction is not valid.

Bad_BrowseNamelnvalid

The browse name is invalid.

Bad_ContentFilterInvalid

The content filter is not valid.

Bad_ContinuationPointinvalid

The continuation point provided is no longer valid.
This status is returned if the continuation point was deleted or the address space was
changed between the browse calls.

Bad_DataEncodinglnvalid

The data encoding is invalid.

This result is used if no dataEncoding can be applied because an Attribute other than
Value was requested or the DataType of the Value Attribute is not a subtype of the
Structure DataType.

Bad_DataEncodingUnsupported

The Server does not support the requested data encoding for the node.
This result is used if a dataEncoding can be applied but the passed data encoding is not
known to the Server.

Bad_EventFilterinvalid

The event filter is not valid.

Bad_FilterNotAllowed

A monitoring filter cannot be used in combination with the attribute specified.

Bad_FilterOperandinvalid

The operand used in a content filter is not valid.

Bad_HistoryOperationlnvalid

The history details parameter is not valid.

Bad_HistoryOperationUnsupported

The Server does not support the requested operation.

Bad_IndexRangelnvalid

The syntax of the index range parameter is invalid.

Bad_IndexRangeNoData

No data exists within the range of indexes specified.

Bad_MonitoredltemFilterinvalid

The monitored item filter parameter is not valid.

Bad_MonitoredltemFilterUnsupported

The Server does not support the requested monitored item filter.

Bad_Monitoredltemldinvalid

The monitoring item id does not refer to a valid monitored item.

Bad_MonitoringModelnvalid

The monitoring mode is invalid.

Bad_NoCommunication

Communication with the data source is defined, but not established, and there is no last
known value available.

This status/sub-status is used for cached values before the first value is received or for
Write and Call if the communication is not established.

Bad_NoContinuationPoints

The operation could not be processed because all continuation points have been
allocated.

Bad_NodeClasslInvalid

The node class is not valid.

Bad_NodeldInvalid

The syntax of the node id is not valid or refers to a node that is not valid for the
operation.

Bad_NodeldUnknown

The node id refers to a node that does not exist in the Server address space.

Bad_NoDeleteRights

The Server will not allow the node to be deleted.

Bad_NodeNotInView

The nodesToBrowse is not part of the view.

1.05.04 166 OPC 10000-4: Services

Symbolic Id Description
Bad_NotFound A requested item was not found or a search operation ended without success.
Bad_Notimplemented Requested operation is not implemented.
Bad_NoValue There is no value available.
The status is used if a Variable is created and no default value or no initial value is
available.
Bad_NotReadable The access level does not allow reading or subscribing to the Node.
Bad_NotSupported The requested operation is not supported.
Bad_NotWritable The access level does not allow writing to the Node.
Bad_ObjectDeleted The Object cannot be used because it has been deleted.
Bad_OutOfRange The value was out of range.
Bad_ReferenceTypeldInvalid The reference type id does not refer to a valid reference type node.
Bad_SecurityModelnsufficient The SecurityPolicy and/or MessageSecurityMode do not match the Server requirements

to complete the operation.
For example, a user may have the right to receive the data but the data can only be
transferred through an encrypted channel with an appropriate SecurityPolicy.

Bad_SourceNodeldInvalid The source node id does not refer to a valid node.

Bad_StructureMissing A mandatory structured parameter was missing or null.

Bad_TargetNodeldInvalid The target node id does not refer to a valid node.

Bad_TypeDefinitioninvalid The type definition node id does not reference an appropriate type node.
Bad_TypeMismatch The value supplied for the attribute is not of the same type as the attribute's value.
Bad_WaitingForlinitialData Waiting for the Server to obtain values from the underlying data source.

After creating a Monitoredltem or after setting the MonitoringMode from DISABLED to
REPORTING or SAMPLING, it may take some time for the Server to actually obtain
values for these items. In such cases the Server can send a Notification with this status
prior to the Notification with the first value or status from the data source.

7.40 TimestampsToReturn

The TimestampsToReturn is an enumeration that specifies the Timestamp Attributes to be
transmitted for Monitoreditems or Nodes in Read and HistoryRead. The values of this parameter
are defined in Table 184.

Table 184 — TimestampsToReturn values

Name Value Description

SOURCE 0 Return the source timestamp.

SERVER 1 Return the Server timestamp.

BOTH 2 Return both the source and Server timestamps.

NEITHER 3 Return neither timestamp.
This is the default value for Monitoredltems if a Variable value is not being accessed.
For HistoryRead this is not a valid setting.

INVALID 4 No value specified.

7.41 UserldentityToken parameters
7.41.1 Overview

The UserldentityToken structure used in the Server Service Set allows Clients to specify the identity
of the user they are acting on behalf of. The exact mechanism used to identify users depends on
the system configuration. The different types of identity tokens are based on the most common
mechanisms that are used in systems today. Table 185 defines the current set of user identity
tokens. The ExtensibleParameter type is defined in 7.17.

Table 185 — UserldentityToken parameterTypelds

Symbolic Id Description

AnonymousldentityToken No user information is available.

UserNameldentityToken A user identified by user name and password.

X509IdentityToken A user identified by an X.509 v3 Certificate.

IssuedldentityToken A user identified by a token issued by an external Authorization Service.

OPC 10000-4: Services 167 1.05.04

7.41.2 Token Encryption and Proof of Possession
7.41.2.1 Overview

The Client shall always prove possession of a UserldentityToken when it passes it to the Server.
Some tokens include a secret such as a password which the Server will accept as proof. In order to
protect these secrets, the Token may be encrypted before it is passed to the Server. Other types of
tokens allow the Client to create a signature with the secret associated with the Token. In these
cases, the Client proves possession of a UserldentityToken by creating a signature with the secret
and passing it to the Server.

Each UserldentityToken allowed by an Endpoint shall have a UserTokenPolicy specified in the
EndpointDescription. The UserTokenPolicy specifies what SecurityPolicy to use when encrypting or
signing. If this SecurityPolicy is null or empty then the Client uses the SecurityPolicy in the
EndpointDescription. If the matching SecurityPolicy is set to None then no encryption or signature
is required. The possible SecurityPolicies are defined in OPC 10000-7.

It is recommended that applications never set the SecurityPolicy to None for UserldentityTokens
that include a secret because these secrets could be used by an attacker to gain access to the
system.

Clients shall validate the Server Certificate and ensure it is trusted before sending a
UserldentityToken encrypted with the Certificate.

The encrypted secret and Signature are embedded in a ByteString which is part of the
UserldentityToken. The format of this ByteString depends on the type of UserldentityToken and the
SecurityPolicy. Clients shall validate the Server Certificate and ensure it is trusted before sending
a UserldentityToken encrypted with the Certificate.

The legacy token secret format defined in 7.41.2.2 is not extensible and provides only encryption
but the encrypted data is not signed. It is used together with the USERNAME UserldentityToken.
The password secret exchanged with this format shall not exceed 64 bytes. If the password exceeds
64 bytes, the EncryptedSecret format shall be used or the clear text password is sent over a
SecureChannel that is encrypted.

The EncryptedSecret format defined in 7.41.2.3 provides an extensible secret format together with
the definition how the secret is signed and encrypted. It allows for the layout to be updated as new
token types are defined or new SecurityPolicies are added.

The EncryptedSecret format starts with a Typeld, EncodingMask and Length. These values allow a
Server to determine how to handle the secret. If the Typeld does not resolve to one of the defined
EncryptedSecret format DataTypes and a USERNAME UserldentityToken has been provided then
the Server may attempt to handle the secret using the legacy token secret format.

The UserldentityToken types and the token formats supported by the Endpoint are identified by the
UserTokenPolicy defined in 7.42.

To prevent the leakage of information useful to attackers, Servers shall ensure that the process of
validating UserldentityTokens completes in a fixed interval independent of whether an error occurs
or not. The process of validation includes decrypting, check for padding and checking for a valid
nonce. If any errors occur the return code is Bad_IldentityTokenlnvalid.

Servers shall log details of any failure to validate a UserldentityToken and shall lock out Client
applications after five failures.

7.41.2.2 Legacy Encrypted Token Secret Format

When encrypting a UserldentityToken, the Client appends the last ServerNonce to the secret. The
data is then encrypted with the public key from the Server’s Certificate.

A Client should not add any padding after the secret. If a Client adds padding then all bytes shall
be zero. A Server shall check for padding added by Clients and ensure that all padding bytes are
zeros. Servers shall reject UserldentityTokens with invalid padding. Administrators shall be able to
configure Servers to accept UserldentityTokens with invalid padding.

1.05.04 168 OPC 10000-4: Services

If no encryption is applied, the structure is not used and only the secret without any Nonce is passed
to the Server.

Table 186 describes how to serialize UserldentityTokens before applying encryption.

Table 186 — Legacy UserldentityToken Encrypted Token Secret Format

Name Type Description

Length Byte [4] The length of the data to be encrypted including the ServerNonce but excluding the length field.
This field is a 4-byte unsigned integer encoded with the least significant bytes appearing first.

tokenData Byte [*] The token data.

serverNonce Byte [*] The last ServerNonce returned by the Server in the CreateSession or ActivateSession response.

7.41.2.3 EncryptedSecret Format

The EncryptedSecret uses an extensible format which has the Typeld of a DataType Node as a
prefix as defined for the ExtensionObject encoding in OPC 10000-6. The general layout of the
EncryptedSecret is shown in Figure 39.

Typeld
EncodingMask
Length
SecurityPolicyUri
EncryptingCertificate
SigningTime
KeyDatalength

Common Header

Data To Sign KeyData } Policy Header

Nonce

Secret Payload

Padding
g PaddingSize

Figure 39 — EncryptedSecret layout

The Typeld specifies how the EncryptedSecret is serialized and secured. For example, the
RsaEncryptedSecret requires that the KeyData be encrypted with the public key associated with the
EncryptingCertificate before it is serialized.

The SecurityPolicyUri is used to determine what algorithms were used to encrypt and sign the data.
Valid SecurityPolicyUris are defined in OPC 10000-7.

The payload is always encrypted using the symmetric encryption algorithm specified by the
SecurityPolicyUri. The KeyData provides the keys needed for symmetric encryption. The structure
of the KeyData depends on the EncryptedSecret DataType.

The EncryptedSecret is secured and serialized as follows:

Serialize the common header;

Serialize the KeyData,;

If required, encrypt the KeyData and append the result to the common header;
Update the KeyDatalLength with the length of the encrypted KeyData;

Append the Nonce and the Secret to the encrypted KeyData,;

Calculate padding required on the payload and append after the Secret;
Encrypt the payload;

Calculate a Signature;

Append the Signature.

Individual fields are serialized using the UA Binary encoding (see OPC 10000-6) for the DataType
specified in Table 187. The Padding is used to ensure there is enough data to fill an integer multiple
of encryption blocks. The size of the encryption block depends on the encryption algorithm. The

OPC 10000-4: Services 169 1.05.04

total length of the Padding, not including the PaddingSize, is encoded as a UIntl6. The individual
bytes of the Padding are set to the least significant byte of the PaddingSize.

The EncryptedSecret is deserilized and validated as follows:

Deserialize the common header;

Verify the Signature if the KeyData is not encrypted;

Decrypt the KeyData and verify the Signature if the KeyData is encrypted;
Decrypt the payload;

Verify the padding on the payload;

Extract the Secret;

The fields in the EncryptedSecret are described in Table 187. The first three fields Typeld,
EncodingMask and Length belong to the ExtensionObject encoding defined in OPC 10000-6.

Table 187 — EncryptedSecret layout

Name Type Description

Typeld Nodeld The Nodeld of the DataType Node.

EncodingMask Byte This value is always 1.

Length Int32 The length of the data that follows including the Signature.
SecurityPolicyUri String The URI for the SecurityPolicy used to apply security.
Certificate ByteString The signing and/or encrypting Certificate.

SigningTime DateTime When the Signature was created.

KeyDatalength Uintl6 The length, in bytes, of the KeyData that follows

If the KeyData is encrypted this is the length of the encrypted data;

Otherwise, it is the length of the unencrypted data.

KeyData Byte [*] The key data used to create the keys needed for decrypting and verifying the
payload using the SymmetricEncryptionAlgorithm specified by the SecurityPolicyUri.
Each EncryptedSecret DataType describes how the key data is structured for
different SecurityPolicies.

Nonce ByteString This is the last serverNonce returned in the CreateSession or ActivateSession
Response when a UserldentityToken is passed with the ActivateSession Request.
If used outside of an ActivateSession call, the Nonce is created by the sender and its
length shall be between 32 and 128 bytes inclusive.

Secret ByteString The secret to protect.

The password when used with UserNameldentityTokens.

The tokenData when used with IssuedldentityTokens.

If the Secret is a String is it encoded using UTF-8 first.

PayloadPadding Byte[*] Additional padding added to ensure the size of the encrypted payload is an integer
multiple of the InitializationVectorLength specified by the SecurityPolicyUri. If the
InitializationVectorLength is less than 16 bytes then 16 bytes are used instead.
The value of each byte is the least significant byte of the PayloadPaddingSize.
PayloadPaddingSize Uintl6 The size of the padding added to the payload.

Signature Byte[*] The Signature calculated after all encryption is applied.

Each EncryptedSecret DataType describes how the Signature is calculated for
different SecurityPolicies.

The PayloadPaddingSize adjusted with the following formula:

If (Secret.Length + PayloadPaddingSize < InitializationVectorLength) Then
PayloadPaddingSize = PayloadPaddingSize + InitializationVectorLength

Where the InitializationVectorLength is specified by the SymmetricEncryptionAlgorithm.
The currently available EncryptedSecret DataTypes are defined in Table 188.

Table 188 — EncryptedSecret DataTypes

Type Name When to Use

RsaEncryptedSecret Used when the SecurityPolicy requires the use of RSA cryptography.
It is described in 7.41.2.4.

EccEncryptedSecret Used when the SecurityPolicy requires the use of ECC cryptography.
It is described in 7.41.2.5.

1.05.04 170 OPC 10000-4: Services

7.41.2.4 RsaEncryptedSecret DataType
The RsaEncryptedSecret uses RSA based Asymmetric Cryptography.

Additional semantics for the fields in the EncryptedSecret layout for the RsaEncryptedSecret
Structure are described in Table 189.

Table 189 — RsaEncryptedSecret structure

Name Type Description

Typeld Nodeld The Nodeld of the RsaEncryptedSecret DataType Node.

EncodingMask Byte See Table 187.

Length Uint32 See Table 187.

SecurityPolicyUri String See Table 187.

Certificate ByteString The SHA1 hash of the DER form of the Certificate used to encrypt the KeyData.
SigningTime DateTime See Table 187.

KeyDatalength UInt16 The length, in bytes, of the encrypted KeyData.

KeyData The KeyData is encrypted with the PublicKey associated with the receiver of the

EncryptedSecret. The creator of the EncryptedSecret generates the SigningKey,
EncryptingKey and InitializationVector using a cryptographic random number
generator with the lengths required by the SecurityPolicy.

SigningKey ByteString The key used to compute the Signature.
EncryptingKey ByteString The key used to encrypt payload.
InitializationVector ByteString The initialization vector used with the EncryptingKey.
Nonce ByteString A Nonce. This is the last ServerNonce returned in the CreateSession or

ActivateSession Response when proving a UserldentityToken passed in the
ActivateSession Request. In other contexts, this is a Nonce created by the
sender with a length between 32 and 128 bytes inclusive.

Secret ByteString See Table 187.
PayloadPadding Byte[*] See Table 187.
PayloadPaddingSize Uint16 See Table 187.
Signature Byte[*] The Signature calculated with the SigningKey using the

SymmetricEncryptionAlgorithm from the SecurityPolicy.

The Signature is calculated after encrypting the KeyData and the payload.

The Signature can only be checked after the KeyData is decrypted. It allows the
receiver to verify that the message has not beem tampered with. It does not
provide any information about who created the EncryptedSecret.

7.41.2.5 EccEncryptedSecret DataType
The EccEncryptedSecret uses ECC based Asymmetric Cryptography.

Additional semantics for the fields in the EncryptedSecret layout for the EccEncryptedSecret
Structure are described in Table 190.

The EccEncryptedSecret uses ECC EphemeralKeys to create the symmetric key used to encrypt
the Secret. The handshake required to create and use the EphemeralKeys is described in OPC
10000-6.

OPC 10000-4: Services 171 1.05.04

Table 190 — EccEncryptedSecret Layout

Name Type Description

Typeld Nodeld The Nodeld of the EccEncryptedSecret DataType Node.
EncodingMask Byte See Table 187

Length Uint32 See Table 187

SecurityPolicyUri String See Table 187

Certificate ByteString | The signing Certificate encoded in DER form.

The value shall include the entire chain.

This value may be null or empty if the SigningCertificate is known to the receiver. This
is true if the structure is used to provide a UserldentityToken to a Server over a
SecureChannel and the SigningCertificate is the Client Applicationinstance

Certificate.
SigningTime DateTime See Table 187
KeyDatal ength Uintl6 The length of the KeyData without encryption.
KeyData The KeyData is not encrypted.
SenderPublicKey ByteString | The Public Key for the EphemeralKey created by the sender.
ReceiverPublicKey ByteString | The Public Key for the EphemeralKey created by the receiver.
Nonce ByteString | A Nonce. This is the last ServerNonce returned in the CreateSession or

ActivateSession Response when proving a UserldentityToken passed in the
ActivateSession Request. In other contexts, this is a Nonce created by the sender
with a length between 32 and 128 bytes inclusive.

Secret ByteString | See Table 187
PayloadPadding Byte [*] See Table 187
PayloadPaddingSize Uint16 See Table 187
Signature Byte [*] When using AuthenticatedEncryption the Signature has two parts: the Signature

produced when the secret is encrypted using the SymmetricEncryptionAlgorithm and
the Signature calculated using the Certificate and the AsymmetricSignatureAlgorithm.
Both Signatures are calculated from the start of the packet. The
AsymmetricSignatureAlgorithm Signature includes the SymmetricEncryptionAlgorithm
Signature.

When using UnauthenticatedEncryption the Signature is only calculated using the
Certificate and the AsymmetricSignatureAlgorithm.

7.41.3 AnonymousldentityToken
The AnonymousldentityToken is used to indicate that the Client has no user credentials.

Table 191 defines the AnonymousldentityToken parameter.

Table 191 — AnonymousldentityToken

Name Type Description
AnonymousldentityToken Structure An anonymous user identity.
policyld String An identifier for the UserTokenPolicy that the token conforms to.

The UserTokenPolicy structure is defined in 7.42. Servers that provide a null or
empty Policyld shall accept null or empty and treat them as equal.

7.41.4 UserNameldentityToken
The UserNameldentityToken is used to pass simple username/password credentials to the Server.

This token shall be encrypted by the Client if required by the SecurityPolicy of the UserTokenPolicy.
The Server should specify a SecurityPolicy for the UserTokenPolicy if the SecureChannel has a
SecurityPolicy of None and no transport layer encryption is available. If None is specified for the
UserTokenPolicy and SecurityPolicy is None then the password only contains the UTF-8 encoded
password. The SecurityPolicy of the SecureChannel is used if no SecurityPolicy is specified in the
UserTokenPolicy. The Server shall specify a SecurityPolicy for the UserTokenPolicy if the
SecureChannel has a SecurityPolicy other than None and the MessageSecurityMode is not
SIGNANDENCRYPT. See Table 193 for possible combinations.

If the token is to be encrypted the password shall be converted to a UTF-8 ByteString, encrypted
and then serialized according to the following rules. When using an RSA based SecurityPolicy and
the password exceeds 64 bytes, it is encrypted and serialized as described in 7.41.2.4. For
passwords that do not exceed 64 bytes, it is encrypted and serialized as described in 7.41.2.2.
When using the ECC based SecurityPolicies the password is encrypted and serialized as described
in 7.41.2.5.

1.05.04 172 OPC 10000-4: Services

The Server shall decrypt the password and verify the ServerNonce.

If the SecurityPolicy is None then the password only contains the UTF-8 encoded password. This
configuration should not be used unless the network traffic is encrypted in some other manner such
as a VPN. The use of this configuration without network encryption would result in a serious security
fault, in that it would cause the appearance of a secure user access, but it would make the password
visible in clear text.

Table 192 defines the UserNameldentityToken parameter.

Table 192 — UserNameldentityToken

Name Type Description
UserNameldentityToken Structure UserName value.
policyld String An identifier for the UserTokenPolicy that the token conforms to.
The UserTokenPolicy structure is defined in 7.42. Servers that provide a null or
empty Policyld shall accept null or empty and treat them as equal.
userName String A string that identifies the user.
password ByteString The password for the user. The password can be an empty string.
The format used for the encrypted data is described in 7.41.2.2.
encryptionAlgorithm String A string containing the URI of the AsymmetricEncryptionAlgorithm.
The URI string values are defined names that may be used as part of the security
profiles specified in OPC 10000-7.
This parameter is null or empty if the password is not encrypted.

Table 193 describes the dependencies for selecting the AsymmetricEncryptionAlgorithm for the
UserNameldentityToken. The SecureChannel SecurityPolicy URI is specified in the
EndpointDescription and used in subsequent OpenSecureChannel requests. The UserTokenPolicy
SecurityPolicy URI is specified in the EndpointDescription. The encryptionAlgorithm is specified in
the UserNameldentityToken or IssuedldentityToken provided by the Client in the ActivateSession
call. The SecurityPolicy Other in the table refers to any SecurityPolicy other than None. The
selection of the EncryptionAlgorithm is based on the UserTokenPolicy. The SecureChannel
SecurityPolicy is used if the UserTokenPolicy is null or empty.

Table 193 — EncryptionAlgorithm selection

SecureChannel SecureChannel UserTokenPolicy UserldentityToken EncryptionAlgorithm
SecurityPolicy SecurityMode SecurityPolicy

Security Policy - None | NONE Null or empty No encryption @

Security Policy - None | NONE Security Policy - None No encryption @

Security Policy - None | NONE Security Policy - Other Asymmetric algorithm for "Other"

Security Policy - Other

Other than NONE

Null or empty

Asymmetric algorithm for "Other"

Security Policy - Other

Other than NONE

Security Policy - Yet another

Asymmetric algorithm for "Yet another"

Security Policy - Other

Other than NONE

Security Policy - Other

Asymmetric algorithm for "Other"

Security Policy - Other

SIGNANDENCRYPT

Security Policy - None

No encryption but encrypted SecureChannel

Security Policy - Other

SIGN

Security Policy - None

Invalid configuration shall be rejected.

@ The use of this configuration without network encryption would result in a serious security fault.

7.41.5 X509ldentityTokens
The X509ldentityToken is used to pass an X.509 v3 Certificate which is issued by the user.

This token shall always be accompanied by a Signature in the userTokenSignature parameter of
ActivateSession if required by the SecurityPolicy. The Server should specify a SecurityPolicy for the
UserTokenPolicy if the SecureChannel has a SecurityPolicy of None.

Table 194 defines the X509ldentityToken parameter.

OPC 10000-4: Services 173 1.05.04

Table 194 — X.509 v3 Identity Token

Name Type Description
X509IdentityToken structure X.509 v3 value.
policyld String An identifier for the UserTokenPolicy that the token conforms to.

The UserTokenPolicy structure is defined in 7.42. Servers that provide a null or
empty Policyld shall accept null or empty and treat them as equal.
certificateData ByteString The X.509 v3 Certificate in DER format.

7.41.6 IssuedldentityToken

The IssuedldentityToken is used to pass SecurityTokens issued by an external Authorization Service
to the Server. These tokens may be text or binary.

OAuth2 defines a standard for Authorization Services that produce JSON Web Tokens (JWT). These
JWTs are passed as an Issued Token to an OPC UA Server which uses the signature contained in
the JWT to validate the token. OPC 10000-6 describes OAuth2 and JWTs in more detail. If the token
is encrypted, it shall use the EncryptedSecret format defined in 7.41.2.3.

This token shall be encrypted by the Client if required by the SecurityPolicy of the UserTokenPolicy.
The Server should specify a SecurityPolicy for the UserTokenPolicy if the SecureChannel has a
SecurityPolicy of None and no transport layer encryption is available. The SecurityPolicy of the
SecureChannel is used If no SecurityPolicy is specified in the UserTokenPolicy.

If the SecurityPolicy is not None, the tokenData shall be encoded in UTF-8 (if it is not already binary),
signed and encrypted according the rules specified for the tokenType of the associated
UserTokenPolicy (see 7.42).

If the SecurityPolicy is None then the tokenData only contains the UTF-8 encoded tokenData. This
configuration should not be used unless the network is encrypted in some other manner such as a
VPN. The use of this configuration without network encryption would result in a serious security
fault, in that it would cause the appearance of a secure user access, but it would make the token
visible in clear text.

IssuedldentityTokens have an expiration time, and a Server shall invalidate the credentials of the
Session within a configurable time after the token expires. The Session shall stay valid with the
Anonymous Role. Clients should renew the token with ActivateSession before the expiration time to
avoid communication interruption.

Table 195 defines the IssuedldentityToken parameter.

Table 195 — IssuedldentityToken

Name Type Description
IssuedldentityToken structure The token provided by an Authorization Service.
policyld String An identifier for the UserTokenPolicy that the token conforms to.

The UserTokenPolicy structure is defined in 7.42. Servers that provide a null or
empty Policyld shall accept null or empty and treat them as equal.

tokenData ByteString The text or binary representation of the token.
The format of the data depends on the associated UserTokenPolicy.
encryptionAlgorithm String The URI of the AsymmetricEncryptionAlgorithm.

The list of OPC UA-defined names that may be used is specified in OPC 10000-7.
See Table 193 for details on picking the correct URI.

This parameter is null or empty if the tokenData is not encrypted or if the
EncryptedSecret format is used.

7.42 UserTokenPolicy

The components of this parameter are defined in Table 196.

1.05.04

174 OPC 10000-4: Services

Table 196 — UserTokenPolicy

Name

Type

Description

UserTokenPolicy

structure

Specifies a UserldentityToken that a Server will accept.

policyld

String

An identifier for the UserTokenPolicy assigned by the Server. The identifier may be null
or empty. Null or empty are equal. The identifier shall be unique across the
UserTokenPolicies assigned by the Server.

The Client specifies this value when it constructs a UserldentityToken that conforms to
the policy.

This value is only unique within the context of a single Server.

tokenType

Enum
User
TokenType

The type of user identity token required. The UserTokenType is defined in 7.43

A tokenType of ANONYMOUS indicates that the Server does not require any user
identification. In this case, the Client Application Instance Certificate is used as the user
identification.

issuedTokenType

String

A URI for the type of token.

OPC 10000-6 defines URIs for common issued token types.
Vendors may specify their own token types.

This field may only be specified if TokenType is ISSUEDTOKEN.

issuerEndpointUrl

String

An optional string which depends on the Authorization Service.

The meaning of this value depends on the issuedTokenType. Further details for the
different token types are defined in OPC 10000-6.

For JWTs this is a JSON object with fields defined in OPC 10000-6.

securityPolicyUri

String

The security policy to use when encrypting or signing the UserldentityToken when it is
passed to the Server in the ActivateSession request. Clause 7.41 describes how this
parameter is used.

The security policy for the SecureChannel is used if this value is null or empty.

7.43 UserTokenType

The UserTokenType is an enumeration that specifies the user identity token type. The possible
values are described in Table 197.

Table 197 — UserTokenType values

Name Value | Description

ANONYMOUS 0 No token is required.

USERNAME 1 A username/password token.

CERTIFICATE 2 An X.509 v3 Certificate token.
ISSUEDTOKEN 3 Any token issued by an Authorization Service.

7.44 VersionTime

This primitive data type is a UInt32 that represents the time in seconds since the year 2000. The
epoch date is midnight UTC (00:00) on January 1, 2000.

It is used as version number based on the last change time. If the version is updated, the new value
shall be greater than the previous value.

If a Variable is initialized with a VersionTime value, the value shall be either loaded from persisted
configuration or time synchronization shall be available to ensure a unique version is applied.

The value 0 is used to indicate that no version information is available.

7.45 ViewDescription

The components of this parameter are defined in Table 198.

OPC 10000-4: Services

175 1.05.04

Table 198 — ViewDescription

Name Type Description
ViewDescription structure Specifies a View.
viewld Nodeld Nodeld of the View to Query. A null value indicates the entire AddressSpace.
timestamp UtcTime The time date desired. The corresponding version is the one with the closest
previous creation timestamp. Either the Timestamp or the viewVersion
parameter may be set by a Client, but not both. If ViewVersion is set this
parameter shall be null.
viewVersion Uint32 The version number for the View desired. When Nodes are added to or removed

from a View, the value of a View’s ViewVersion Property is updated. Either the
Timestamp or the viewVersion parameter may be set by a Client, but not both.
The ViewVersion Property is defined in OPC 10000-3. If timestamp is set this
parameter shall be 0. The current view is used if timestamp is null and
viewVersion is 0.

1.05.04 176 OPC 10000-4: Services

Annex A
(informative)

BNF definitions

A.l Overview over BNF

The BNF (Backus-Naur form) used in this annex uses <" and ">" to mark symbols, '[" and '] to
identify optional paths and °|” to identify alternatives. If the ‘(* and ‘)’ symbols are used, it indicates
sets.

A.2 BNF of RelativePath

A RelativePath is a structure that describes a sequence of References and Nodes to follow. This
annex describes a text format for a RelativePath that can be used in documentation or in files used
to store configuration information.

The components of a RelativePath text format are specified in Table A.1.

Table A.1 — RelativePath

Symbol Meaning

/ The forward slash character indicates that the Server is to follow any subtype of
HierarchicalReferences.
The period (dot) character indicates that the Server is to follow any subtype of a Aggregates
ReferenceType.
<[#!ns:]ReferenceType> | A string delimited by the ‘<’ and >’ symbols specifies the BrowseName of a ReferenceType to
follow. By default, any References of the subtypes the ReferenceType are followed as well. A ‘#
placed in front of the BrowseName indicates that subtypes should not be followed.
A ‘' in front of the BrowseName is used to indicate that the inverse Reference should be followed.
The BrowseName may be qualified with a namespace index (indicated by a numeric prefix followed
by a colon). This namespace index is used specify the namespace component of the BrowseName
for the ReferenceType. If the namespace prefix is omitted then namespace index 0 is used.
[ns:]BrowseName A string that follows a /, *.” or >’ symbol specifies the BrowseName of a target Node to return or
follow. This BrowseName may be prefixed by its namespace index. If the namespace prefix is
omitted then namespace index 0 is used.
Omitting the final BrowseName from a path is equivalent to a wildcard operation that matches all
Nodes which are the target of the Reference specified by the path.
& The & sign character is the escape character. It is used to specify reserved characters that appear
within a BrowseName. A reserved character is escaped by inserting the ‘&’ in front of it. Examples of
BrowseNames with escaped characters are:

Received browse path name Resolves to
“&Name_1" “/Name_1"
“& Name_2” “Name_2"
“&:Name_3” “Name_3”
“&&Name_4" “&Name_4"

Table A.2 provides RelativePaths examples in text format.

OPC 10000-4: Services

177 1.05.04

Table A.2 — RelativePath Examples

Browse Path

Description

“/2:Block&.Output”

Follows any forward hierarchical Reference with target BrowseName =
“2:Block.Output”.

“/3:Truck.0:NodeVersion”

Follows any forward hierarchical Reference with target BrowseName = “3:Truck” and
from there a forward Aggregates Reference to a target with BrowseName
“0:NodeVersion”.

“<1:ConnectedTo>1:Boiler/1:HeatSensor”

Follows any forward Reference with a BrowseName = ‘1:ConnectedTo’ and finds
targets with BrowseName = ‘1:Boiler’. From there follows any hierarchical Reference
and find targets with BrowseName = ‘1:HeatSensor’.

“<1:ConnectedTo>1:Boiler/”

Follows any forward Reference with a BrowseName = ‘1:ConnectedTo’ and finds
targets with BrowseName = ‘1:Boiler’. From there it finds all targets of hierarchical
References.

“<0:HasChild>2:Wheel”

Follows any forward Reference with a BrowseName = ‘HasChild’ and qualified with
the default OPC UA namespace. Then find targets with BrowseName = ‘Wheel’
qualified with namespace index ‘2.

“<IHasChild>Truck”

Follows any inverse Reference with a BrowseName = ‘HasChild’. Then find targets
with BrowseName = ‘Truck’. In both cases, the namespace component of the
BrowseName is assumed to be 0.

“<0:HasChild>”

Finds all targets of forward References with a BrowseName = ‘HasChild’ and qualified
with the default OPC UA namespace.

The following BNF describes the syntax of the RelativePath text format.

<relative-path> ::=

<reference-type>
<browse-name>
<namespace-index>

<digit>
191

<name>
<reserved-char>

<name-char>

A.3

<reference-type> <browse-name>

[relative-path]

YUV YL 'Y ["#'] ['!'] <browse-name> '>'
[<namespace-index> ':'] <name>

::= <digit> [<digit>]

O e e N T R I I A B R
(<name-char> | '&' <reserved-char>) [<name>]

AN R R AR A AR N RS 4

All valid characters for a String
excluding reserved-chars.

BNF of NumericRange

The following BNF describes the syntax of the NumericRange parameter type.

<numeric-range>
<dimension>
<index>

<digit> RS

<dimension> | <dimension> ',' <numeric-range>

(see OPC 10000-3)

<index> | <index> ':' <dimension>
<digit> | <digit> <index>
!l! | 12' ‘ I3Y ‘ 14! | l5' I l6l | I7Y | 18! | 191

1.05.04 178 OPC 10000-4: Services

Annex B
(informative)

ContentFilter and Query examples

B.1 Simple ContentFilter examples

B.1.1 Overview

These examples provide fairly simple ContentFilters. Filter similar to these examples may be used
in processing events.

The following conventions apply to these examples with regard to how Attribute operands are used
(for a definition of this operand see 7.7.4):

e AttributeOperand: Refers to a Node, an Attribute of a Node or the Value Attribute of a
Property associated with a Node. In the examples, the character names of Nodelds are used
instead of an actual nodeld, this also applies to Attribute Ids.

e The string representation of relative paths is used instead of the actual structure.

e The Namespacelndex used in all examples is 12 (it could just as easily have been 4 or 23
or any value). For more information about Namespacelndex, see OPC 10000-3. The use of
the Namespacelndex illustrates that the information model being used in the examples is not
a model defined by this document, but one created for the examples.

B.1.2 Example 1

For example the logic describe by ‘(((AType.A = 5) or |InList(BType.B, 3,5,7)) and
BaseObjectType.displayName LIKE “Main%”)" would result in a logic tree as shown in Figure B.1
and a ContentFilter as shown in Table B.1. For this example to return anything AType and BType
both shall be subtypes of BaseObjectType, or the resulting “And” operation would always be false.

<:> Operator Element

Attribute
Element

Literal
Element

Figure B.1 — Filter logic tree example

Table B.1 describes the elements, operators and operands used in the example.

OPC 10000-4: Services 179 1.05.04
Table B.1 — ContentFilter example
Element[] | Operator Operand[0] Operand[1] Operand[2] Operand[3]
0 And ElementOperand = 1 Element Operand = 4
1 Or ElementOperand = 2 Element Operand = 3
2 Equals AttributeOperand = Nodeld: LiteralOperand = ‘5’
AType, BrowsePath: “.12:A”,
Attribute:value
3 InList AttributeOperand = Nodeld: LiteralOperand = ‘3’ LiteralOperand = ‘5’ LiteralOperand = ‘7’
BType, BrowsePath: “.12:B”,
Attribute:value
4 Like AttributeOperand = Nodeld: LiteralOperand =
BaseObjectType, BrowsePath: “Main%”
“.”, Attribute: displayName

B.1.3 Example

2

As another example a filter to select all SystemEvents (including derived types) that are contained
in the Areal View or the Area2 View would result in a logic tree as shown in Figure B.2 and a
ContentFilter as shown in Table B.2.

<:> Operator Element

Attribute
Element

Literal
Element

InVi_evy
Areal

|

N

SystemEventType

Figure B.2 — Filter logic tree example

Table B.2 describes the elements, operators and operands used in the example.

Table B.2 — ContentFilter example

Element[] Operator Operand[0] Operand[1]
0 And ElementOperand = 1 ElementOperand = 4
1 Or ElementOperand = 2 ElementOperand = 3
2 InView AttributeOperand = Nodeld: Areal, BrowsePath: ".", Attribute: Nodeld
3 InView AttributeOperand = Nodeld: Area2, BrowsePath: ".", Attribute: Nodeld
4 OfType AttributeOperand = Nodeld: SystemEventType, BrowsePath: ".",

Attribute: Nodeld”

B.2 Complex Examples of Query Filters

B.2.1 Overview

These query examples illustrate complex filters. The following conventions apply to these examples
with regard to Attribute operands (for a definition of these operands, see 7.7.4).

o AttributeOperand: Refers to a Node, an Attribute of a Node or the Value Attribute of a
Property associated with a Node. In the examples character names of ExpandedNodeld are
used instead of an actual ExpandedNodeld, this also applies to Attribute Ids.

e The string representation of relative paths is used instead of the actual structure.

1.05.04 180 OPC 10000-4: Services

e The Namespacelndex used in all examples is 12 (it could just as easily have been 4 or 23
or any value). For more information about Namespacelndex, see OPC 10000-3. The use of
the Namespacelndex illustrates that the information model being used in the examples is not
a model defined by this document, but one created for the examples.

B.2.2 Used type model

The following examples use the type model described below. All Property values are assumed to be
string unless otherwise noted

New Reference types:
"HasChild" derived from HierarchicalReference.
"HasAnimal" derived from HierarchicalReference.
"HasPet" derived from HasAnimal.
"HasFarmAnimal" derived from HasAnimal.
"HasSchedule" derived from HierarchicalReference.

PersonType derived from BaseObjectType adds:
HasProperty "LastName".
HasProperty "FirstName".
HasProperty "StreetAddress".
HasProperty "City".
HasProperty "ZipCode".
May have HasChild reference to a node of type PersonType.
May have HasAnimal reference to a node of type AnimalType (or a subtype of this Reference

type).

AnimalType derived from BaseObjectType adds:
May have HasSchedule reference to a node of type FeedingScheduleType.
HasProperty "Name".

DogType derived from AnimalType adds:
HasProperty "NickName".
HasProperty "DogBreed".
HasProperty "License".

CatType derived from AnimalType adds:
HasProperty "NickName".
HasProperty "CatBreed".

PigType derived from AnimalType adds:
HasProperty "PigBreed".

ScheduleType derived from BaseObjectType adds:
HasProperty "Period".

FeedingScheduleType derived from ScheduleType adds:
HasProperty "Food".
HasProperty "Amount" (Stored as an /nt32).

AreaType derived from BaseObjectType is just a simple Folder and contains no Properties.

This example type system is shown in Figure B.3. In this Figure, the OPC UA notation is used for
all References to ObjectTypes, Variables, Properties and subtypes. Additionally, supported
References are contained in an inner box. The actual references only exist in the instances, thus,
no connections to other Objects are shown in the Figure and they are subtypes of the listed
Reference.

1.05.04

OPC 10000-4: Services 181
Types
BaseObjectType
PersonType AnimalType ScheduleType AreaType
References References
HasChild
. HasSchedule

Lastname

FirstName

StreetAddress

City

ZipCode

FeedingScheduleType

Name

Amount

T
o
o
o

PigType
PigBreed

>I l l

|

BaseReferenceType

/\

1

HierarchicalReferenceTyp

A

HasSchedule

HasAnimal

HasFarmAnimal

HasPet

CatType DogType

NickName

CatBreed

Figure B.3 — Example Type Nodes

NickName

DogBreed

License

A corresponding example set of instances is shown in Figure B.4. These instances include a type
Reference for Objects. Properties also have type References, but the References are omitted for
simplicity. The name of the Object is provided in the box and a numeric instance Nodeld in brackets.
Standard ReferenceTypes use the OPC UA notation, custom ReferenceTypes are listed as a nhamed
Reference. For Properties, the BrowseName, Nodeld, and Value are shown. The Nodes that are
included in a View (Viewl) are enclosed in the coloured box. Two Area nodes are included for
grouping of the existing person nodes. All custom nodes are defined in namespace 12 which is not

included in Figure B.4.

1.05.04 182 OPC 10000-4: Services

Instances Areal (94) Area2 (95) Types
AreaType

Viewl ’

-] : PersonType

JFamily1 (30) E— HFamily1 (42) K

T e |

asChild HasChild

_, JFamily2 (36) N HFamily2 (48)

LHas,ChiId f
HFamily3 (54
Lastgame @) Lastname (43) \—b V36
Ones Lastname (37) Hervey
T Jones
F”S"\ja':e (2 FirstName (44) - =
ol FirsiName (38) Paul ESTIER (¢2)
Sophia Hervey Lastname (55)
Address (33) p Hervey
319 2" Ave PETREES (ER) FirstName (50)
Address (39) 49 Main st .
nd Paul (Jr. FirstName (56)
HasPet : 319 2" Ave
City (34) = Sara
Jerse City (@0) H—{ Cclny (|46)d Address (51)
1 Jersey evean 49 Main st Address (57
angg(ligg(%) ZipCode (47) S 49 Main st
ZipCode (41) 03854 v T
02138 Cleveland City (58)
Cleveland

ZipCode (53)
HasPet 03854 ZipCode (59)
HasPet 03854
‘ ut > CatType
‘ I ‘ HasFarmAnimal
Catl (70) Cat2 (74) Dogl (82) 0 M > DogType
Name (71) Name (75) Name (83)
Rosemary Basil Oliver PiaT
> igType
Nickname (72) Nickname (76) Nickname (84) ‘
Rosie Trouble Olie
CatBreed (73) CatBreed (77) DogBreed (85) Pigl (91)
Tabby Tabby American Bull Dog
Has License (86) .
Schedule | Has Ha5403 PlgB’:Aegg[©2)
Schedule
Name (93)
Porker
> Schedulel (78) Schedule2 (87) “ FeedingScheduIe
g Type

Period (88)
Daily

Period (79)
Hourly
Food (80)
Purino

Food (89)
ALPY
Amount (90)
100

Figure B.4 — Example Instance Nodes

Amount (81)
25

B.2.3 Example Notes

For all of the examples in 7.7.4, the type definition Node is listed in its symbolic form, in the actual call
it would be the ExpandedNodeld assigned to the Node. The Attribute is the symbolic name of the
Attribute, in the actual call they would be translated to the Integerld of the Attribute. Also in all of
the examples the BrowseName is included in the result table for clarity; normally this would not be
returned.

All of the examples include the following items:

e an English description of the object of the query;

e an SQL like description of the query;

e atable that has a NodeTypeDescription of the items that are to be returned;
o afigure illustrating the query filter;

e atable describing the content filter;

e atable describing the resulting dataset.

OPC 10000-4: Services 183 1.05.04

The examples assume namespace 12 is the namespace for all of the custom definitions described
for the examples.

B.2.4 Example 1
This example requests a simple layered filter, a person has a pet and the pet has a schedule.

Example 1: Get PersonType.LastName, AnimalType.Name, ScheduleType.Period where the
Person Has a Pet and that Pet Has a Schedule.

The NodeTypeDescription parameters used in the example are described in Table B.3.

Table B.3 — Example 1 NodeTypeDescription

Type Definition Node Include QueryDataDescription
Subtypes Relative Path Attribute Index Range
PersonType FALSE “.12:LastName” value N/A
“<12:HasPet>12:AnimalType. 12:Name” value N/A
“<12:HasPet>12:AnimalType<12:HasSchedule> | value N/A
12:Schedule. 12:Period”

The corresponding ContentFilter is illustrated in Figure B.5.

<:> Operator Element

D Attribute Element PersonType
) RelatedTo
Literal Element

[AnimalType] [ScheduleType] [HasSchedule]

RelatedTo

Figure B.5 — Example 1 Filter
Table B.4 describes the ContentFilter elements, operators and operands used in the example.

Table B.4 — Example 1 ContentFilter

Element(] Operator Operand[0] Operand[1] Operand[2] Operand[3]
1 RelatedTo AttributeOperand = ElementOperand = 2 | AttributeOperand = LiteralOperand =
Nodeld: PersonType, Nodeld: HasPet, 1’
BrowsePath “.”, BrowsePath “.”,
Attribute: Nodeld Attribute: Nodeld
2 RelatedTo AttributeOperand = AttributeOperand = AttributeOperand = LiteralOperand=
Nodeld: AnimalType, Nodeld: Nodeld: HasSchedule, | ‘1’
BrowsePath “.”, ScheduleType, BrowsePath “.”,
Attribute: Nodeld BrowsePath “.”, Attribute: Nodeld
Attribute: Nodeld

Table B.5 describes the QueryDataSet that results from this query if it were executed against the
instances described in Figure B.4

1.05.04 184 OPC 10000-4: Services

Table B.5 — Example 1 QueryDataSets

Nodeld TypeDefinition RelativePath Value
Nodeld

12:30 (JFamilyl) PersonType “.12:LastName” Jones

“<12:HasPet>12:AnimalType. 12:Name” Rosemary
Basil

“<12:HasPet>12:AnimalType<12:HasSchedule> | Hourly
12:Schedule.12:Period” Daily

12:42(HFamily1) PersonType “.12:LastName” Hervey
‘<12:HasPet>12:AnimalType. 12:Name” Oliver
“<12:HasPet>12:AnimalType<12:HasSchedule> | Daily
12:Schedule.12:Period”

NOTE The RelativePath column and browse name (in parentheses in the Nodeld column) are not in the QueryDataSet
and are only shown here for clarity. The TypeDefinition Nodeld would be an integer not the symbolic name that is included
in the table.

The Value column is returned as an array for each Node description, where the order of the items
in the array would correspond to the order of the items that were requested for the given Node Type.
In Addition, if a single Attribute has multiple values then it would be returned as an array within the
larger array, for example in this table Rosemary and Basil would be returned in a array for
the .<HasPet>.AnimalType.Name item. They are show as separate rows for ease of viewing. The
actual value array for JFamily1 would be (“Jones”, {*RoseMary”, "Basil’}, {“Hourly”, “Daily”})

B.2.5 Example 2

The second example illustrates receiving a list of disjoint Nodes and also illustrates that an array of
results can be received.

Example 2: Get PersonType.LastName, AnimalType.Name where a person has a child or (a
pet is of type cat and has a feeding schedule).

The NodeTypeDescription parameters used in the example are described in Table B.6.

Table B.6 — Example 2 NodeTypeDescription

Type Definition Node | Include QueryDataDescription

Subtypes Relative Path Attribute Index Range
PersonType FALSE “.12:LastName” Value N/A
AnimalType TRUE “.12:Name” Value N/A

The corresponding ContentFilter is illustrated in

Figure B.6.

OPC 10000-4: Services 185 1.05.04

Operator
Element

D Attribute or Property
Element

RelatedTo
Q Literal Element,

[PersonType] [PersonType] [HasChild] [CatType][FeedingSchedule] [HasSchedule]

RelatedTo

Figure B.6 — Example 2 filter logic tree

Table B.7 describes the elements, operators and operands used in the example. It is worth noting
that a CatType is a subtype of AnimalType.

Table B.7 — Example 2 ContentFilter

Element[] | Operator Operand[0] Operand[1] Operand[2] Operand[3]

0 Or ElementOperand=1 ElementOperand = 2

1 RelatedTo AttributeOperand = AttributeOperand = Nodeld: | AttributeOperand = LiteralOperand = ‘1’
Nodeld: PersonType, | PersonType, BrowsePath Nodeld: HasChild,
BrowsePath “.”, “.”, Attribute: Nodeld BrowsePath “.”,
Attribute: Nodeld Attribute: Nodeld

2 RelatedTo AttributeOperand = AttributeOperand = Nodeld: | AttributeOperand = LiteralOperand = ‘1’
Nodeld: CatType, FeedingScheduleType, Nodeld: HasSchedule,
BrowsePath “.”, BrowsePath “.”, Attribute: BrowsePath “.”,
Attribute: Nodeld Nodeld Attribute: Nodeld

The results from this query would contain the QueryDataSets shown in Table B.8.

Table B.8 — Example 2 QueryDataSets

Nodeld TypeDefinition Nodeld RelativePath Value
12:30 (Ifamilyl) PersonType . 12:LastName Jones
12:42 (HFamilyl) PersonType . 12:LastName Hervey
12:48 (HFamily2) PersonType . 12:LastName Hervey
12:70 (Catl) CatType . 12:Name Rosemary
12:74 (Cat2) CatType . 12:Name Basil

NOTE The relative path column and browse name (in parentheses in the Nodeld column) are not in the QueryDataSet and
are only shown here for clarity. The TypeDefinition Nodeld would be a Nodeld not the symbolic name that is included in
the table.

B.2.6 Example 3
The third example provides a more complex Query in which the results are filtered on multiple
criteria.

Example 3: Get PersonType.LastName, AnimalType.Name, ScheduleType.Period where a
person has a pet and the animal has a feeding schedule and the person has a Zipcode =
‘02138’ and (the Schedule.Period is Daily or Hourly) and Amount to feed is > 10.

Table B.9 describes the NodeTypeDescription parameters used in the example.

1.05.04 186 OPC 10000-4: Services

Table B.9 — Example 3 - NodeTypeDescription

Type Definition Include QueryDataDescription
Node Subtypes ["RelativePath Attribute | Index
Range
PersonType FALSE “12:LastName” Value N/A
“<12:HasPet>12:AnimalType. 12:Name” Value N/A
“<12:HasPet>12:AnimalType<12:HasSchedule> Value N/A
12:FeedingSchedule.Period”

The corresponding ContentFilter is illustrated in Figure B.7.

<:> Operator Element
Attribute or Property
Element

Q Literal Element

[PersonType.Zipcode]

PersonType

[AnimaIType] [FeedingScheduleType] [HasSchedule] [Schedule.Period]

Figure B.7 — Example 3 filter logic tree

Table B.10 describes the elements, operators and operands used in the example.

OPC 10000-4: Services 187 1.05.04
Table B.10 — Example 3 ContentFilter
Element[] | Operator Operand[0] Operand[1] Operand[2] Operand[3]
0 And Element Operand= 1 ElementOperand = 2
1 And ElementOperand = 4 ElementOperand = 6
2 And ElementOperand = 3 ElementOperand = 9
3 Or ElementOperand = 7 ElementOperand = 8
4 RelatedTo | AttributeOperand = Nodeld: ElementOperand = 5 AttributeOperand = | LiteralOperand
12:PersonType, BrowsePath “.”, Nodeld: 12:HasPet, | =1’
Attribute: Nodeld BrowsePath “.”,
Attribute: Nodeld
5 RelatedTo | AttributeOperand = Node: AttributeOperand = AttributeOperand = | LiteralOperand
12:AnilmalType, BrowsePath “.”, | Nodeld: Nodeld: =
Attribute: Nodeld 12:FeedingScheduleType, | 12:HasSchedule,
Alias: AT BrowsePath “.”, Attribute: BrowsePath “.”,
Nodeld Attribute: Nodeld
Alias: FST
6 Equals AttributeOperand = Nodeld: LiteralOperand = ‘02138’
12:PersonType BrowsePath
12:Zipcode “.”, Attribute: Value
7 Equals AttributeOperand = Nodeld: LiteralOperand = ‘Daily’
12:PersonType
BrowsePath
“12:HasPet>12:AnimalType<12:
HasSchedule>12:
FeedingSchedule/12:Period”,
Attribute: Value
Alias: FST
8 Equals AttributeOperand = Nodeld: LiteralOperand = ‘Hourly’
12:PersonType
BrowsePath
“12:HasPet>12:AnimalType<12:
HasSchedule>12:
FeedingSchedule/12:Period”,
Attribute: Value
Alias: FST
9 Greater AttributeOperand = Nodeld: ElementOperand = 10
Than 12:PersonType
BrowsePath
“12:HasPet>12:AnimalType<12:
HasSchedule>12:
FeedingSchedule/12:Amount”,
Attribute: Value
Alias: FST
10 Cast LiteralOperand = 10 AttributeOperand =
Nodeld: Int32,
BrowsePath “.”, Attribute:
Nodeld
The results from this query would contain the QueryDataSets shown in Table B.11.
Table B.11 — Example 3 QueryDataSets
Nodeld TypeDefinition | RelativePath Value
Nodeld
12:30 PersonType “.12:LastName” Jones
(JFamily1) “<12:HasPet>12:PersonType. 12:Name” Rosemary
Basil
“<12:HasPet>12:AnimalType<12:HasSchedule>12:FeedingSchedule. Hourly
12:Period” Daily

NOTE The RelativePath column and browse name (in parentheses in the Nodeld column) are not in the QueryDataSet
and are only shown here for clarity. The TypeDefinition Nodeld would be an integer not the symbolic name that is included

in the table.

B.2.7 Example 4

The fourth example provides an illustration of the Hop parameter that is part of the RelatedTo

Operator.

1.05.04 188 OPC 10000-4: Services

Example 4: Get PersonType.LastName where a person has a child who has a child who has a
pet.

Table B.12 describes the NodeTypeDescription parameters used in the example.

Table B.12 — Example 4 NodeTypeDescription

Type Definition Include QueryDataDescription

Node Subtype [Relative Path Attribute Index Range
S

PersonType FALSE “.12:LastName” value N/A

The corresponding ContentFilter is illustrated in Figure B.8.

Q)perator Element

OAttribute or Property
Element

O Literal Element

RelatedTo

PersonType HasChild
(two Hops)

Relat

[AnimaIType] [HasPet]

Figure B.8 — Example 4 filter logic tree

PersonType

Table B.13 describes the elements, operators and operands used in the example.

Table B.13 — Example 4 ContentFilter

Element[] | Operator Operand[0] Operand[1] Operand[2] Operand[3]
0 RelatedTo | AttributeOperand = Nodeld: Element Operand = 1 AttributeOperand = LiteralOperand = ‘2’
12:PersonType, Nodeld:
BrowsePath “.”, 12:HasChild,
Attribute: Nodeld BrowsePath “.”,
Attribute: Nodeld
1 RelatedTo | AttributeOperand = Nodeld: | AttributeOperand = AttributeOperand = LiteralOperand = ‘1’
12:PersonType, Nodeld: Nodeld: 12:HasPet,
BrowsePath “.”, 12:AnimalType, BrowsePath “.”,
Attribute: Nodeld BrowsePath “.”, Attribute: Nodeld
Attribute: Nodeld

The results from this query would contain the QueryDataSets shown in Table B.14. It is worth noting
that the pig “Pig1” is referenced as a pet by Sara, but is referenced as a farm animal by Sara’s
parent Paul.

Table B.14 — Example 4 QueryDataSets

Nodeld TypeDefinition RelativePath Value
Nodeld
12:42 (HFamily1) PersonType “.12:LastName” Hervey

NOTE The RelativePath column and browse name (in parentheses in the Nodeld column) are not in the QueryDataSet
and are only shown here for clarity. The TypeDefinition Nodeld would be an integer not the symbolic name that is included
in the table.

B.2.8 Example 5

The fifth example provides an illustration of the use of alias.

Example 5: Get the last names of children that have the same first name as a parent of theirs
Table B.15 describes the NodeTypeDescription parameters used in the example.

OPC 10000-4: Services 189 1.05.04

Table B.15 — Example 5 NodeTypeDescription

Type Definition Node | Include QueryDataDescription
Subtypes Relative Path Attribute Index Range
PersonType FALSE “<12:HasChild>12:PersonType. Value N/A
12:LastName”

The corresponding ContentFilter is illustrated in Figure B.9.

<:>Operator Element
D Attribute or Property
Element

O Literal Element

RelatedTo Eauals
PersonType PersonType
Ferson'[ype Fer_soTType HasChild FirstNamyf FirstName
Parent Child “p t “Child”
aren

Figure B.9 — Example 5 filter logic tree

In this example, one Reference to PersonType is aliased to “Parent” and another Reference to
PersonType is aliased to “Child”. The value of Parent.firstName and Child.firstName are then
compared. Table B.16 describes the elements, operators and operands used in the example.

Table B.16 — Example 5 ContentFilter

Element]] Operator Operand[0] Operand[1] Operand[2] Operand[3}
0 And ElementOperand = 1 ElementOperand = 2
1 RelatedTo | AttributeOperand = AttributeOperand = AttributeOperand = LiteralOperand =
Nodeld: 12:PersonType, Nodeld: 12:PersonType, Nodeld: “1”
BrowsePath “.”, BrowsePath “.”, Attribute: 12:HasChild,
Attribute: Nodeld, Nodeld, Attribute: Nodeld
Alias: “Parent” Alias: “Child”
2 Equals AttributeOperand = AttributeOperand =
Nodeld: 12:PersonType, Nodeld: 12:PersonType,
BrowsePath BrowsePath
“/12:FirstName”, Attribute: | ““/12:FirstName”, Attribute:
Value, Alias: “Parent” Value, Alias: “Child”

The results from this query would contain the QueryDataSets shown in Table B.17.

Table B.17 — Example 5 QueryDataSets

Nodeld TypeDefinition RelativePath Value
Nodeld
12:42 (HFamilyl) PersonType “<12:HasChild>12:PersonType.12:LastName” | Hervey

NOTE The RelativePath column and browse name (in parentheses in the Nodeld column) are not in the QueryDataSet
and are only shown here for clarity. The TypeDefinition Nodeld would be an integer not the symbolic name that is included
in the table.

B.2.9 Example 6

The sixth example provides an illustration a different type of request, one in which the Client is
interested in displaying part of the AddressSpace of the Server. This request includes listing a
Reference as something that is to be returned.

Example 6: Get PersonType.Nodeld, AnimalType.Nodeld, PersonType.HasChild
Reference, PersonType.HasAnimal Reference where a person has a child who has a
Animal.

1.05.04

190

OPC 10000-4: Services

Table B.18 describes the NodeTypeDescription parameters used in the example.

Table B.18 — Example 6 NodeTypeDescription

Type Definition Node Include QueryDataDescription
Subtypes Relative Path Attribute | Index Range
PersonType FALSE “.12:Nodeld” value N/A
<12:HasChild>12:PersonType<12 | value N/A
:HasAnimal>12:AnimalType.Node
Id
<12:HasChild> value N/A
<12:HasChild>12:PersonType<12 | value N/A
:HasAnimal>

The corresponding ContentFilter is illustrated in Figure B.10.

O Operator Element

)

Attribute or Property
Element

Q Literal Element

PersonType

PersonType

RelatedTo

HasChild

Relat

[AnimaIType] [HasAnimal]

Figure B.10 — Example 6 filter logic tree

Table B.19 describes the elements, operators and operands used in the example.

Table B.19 — Example 6 ContentFilter

Element[] | Operator Operand[0] Operand[1] Operand[2] Operand[3]
0 RelatedTo | AttributeOperand = Nodeld: ElementOperand = 1 AttributeOperand = Node: | LiteralOpera
12:PersonType, BrowsePath 12:HasChild, BrowsePath | nd = ‘1’
“.”, Attribute: Nodeld “.” Attribute:Nodeld
1 RelatedTo | AttributeOperand = Nodeld: AttributeOperand = AttributeOperand = LiteralOpera
12:PersonType, BrowsePath Nodeld: Nodeld: 12:HasAnimal, nd="‘1
“.”, Attribute: Nodeld 12:AnimalType, BrowsePath “.”, Attribute:
BrowsePath “.”, Nodeld
Attribute: Nodeld

The results from this query would contain the QueryDataSets shown in Table B.20.

Table B.20 — Example 6 QueryDataSets

Nodeld TypeDefinition RelativePath Value
Nodeld
12:42 (HFamilyl) PersonType “.Nodeld” 12:42 (HFamilyl)
<12:HasChild>12:PersonType<12:HasAnimal> 12:91 (Pigl)
12:AnimalType.Nodeld
<12:HasChild> HasChild
ReferenceDescription
<12:HasChild>12:PersonType<12:HasAnimal> HasFarmAnimal
ReferenceDescription
12:48 (HFamily2) PersonType “.Nodeld” 12:48 (HFamily2)
<12:HasChild>12:PersonType<12:HasAnimal> 12:91 (Pigl)
12:AnimalType.Nodeld
<12:HasChild> HasChild

ReferenceDescription

<12:HasChild>12:PersonType<12:HasAnimal>

HasPet
ReferenceDescription

OPC 10000-4: Services 191 1.05.04

NOTE The RelativePath and browse name (in parentheses) is not in the QueryDataSet and is only shown here for clarity
and the TypeDefinition Nodeld would be an integer, not the symbolic name that is included in the table. The value field
would in this case be the Nodeld where it was requested, but for the example the browse name is provided in parentheses
and in the case of Reference types on the browse name is provided. For the References listed in Table B.20, the value
would be a ReferenceDescription which are described in 7.30.

Table B.21 provides an example of the same QueryDataSet as shown in Table B.20 without any
additional fields and minimal symbolic Ids. There is an entry for each requested Attribute, in the
cases where an Attribute would return multiple entries the entries are separated by comas. If a
structure is being returned then the structure is enclosed in square brackets. In the case of a
ReferenceDescription the structure contains a structure and DisplayName and BrowseName are
assumed to be the same and defined in Figure B.4.

Table B.21 — Example 6 QueryDataSets without additional information

Nodeld TypeDefinition Value
Nodeld

12:42 PersonType 12:42

12:91

[HasChild, TRUE,[48,HFamily2,HFamily2,PersonTypel]],
[HasFarmAnimal, TRUE[91,Pig1,Pigl,PigType]

12:48 PersonType 12:54

12:91

[HasChild, TRUE,[54,HFamily3,HFamily3,PersonType]]
[HasPet, TRUE,[91,Pig1,Pig1,PigTypel]

The PersonType, HasChild, PigType, HasPet, HasFarmAnimal identifiers used in the above table
would be translated to actual ExpandedNodeld.

B.2.10 Example 7

The seventh example provides an illustration a request in which a Client wants to display part of the
AddressSpace based on a starting point that was obtained via browsing. This request includes listing
References as something that is to be returned. In this case the Person Browsed to Area2 and
wanted to Query for information below this starting point.

Example 7: Get PersonType.Nodeld, AnimalType.Nodeld, PersonType.HasChild Reference,
PersonType.HasAnimal Reference where the person is in Area2 (Cleveland nodes) and the
person has a child.

Table B.22 describes the NodeTypeDescription parameters used in the example.

Table B.22 — Example 7 NodeTypeDescription

Type Definition Node Include QueryDataDescription
Subtypes Relative Path Attribute Index Range
PersonType FALSE “.Nodeld” Value N/A
<12:HasChild> Value N/A
<12:HasAnimal>Nodeld Value N/A
<12:HasAnimal> Value N/A

The corresponding ContentFilter is illustrated in Figure B.11. Note that the Browse call would
typically return a Nodeld, thus the first filter is for the BaseObjectType with a Nodeld of 95 where
95 is the Nodeld associated with the Area2 node, all Nodes descend from BaseObjectType, and
Nodeld is a base Property so this filter will work for all Queries of this nature.

1.05.04 192 OPC 10000-4: Services

<:> Operator Element

DAttribute or Property
Element

OLiteral Element

BaseObjectType
Nodeld

RelatedTo

HierarchicalReference
Type

RelatedTo

[PefSOHType] [AnimalType] [HasAnimal]

Figure B.11 — Example 7 filter logic tree

Table B.23 describes the elements, operators and operands used in the example.

Table B.23 — Example 7 ContentFilter

Element[] | Operator Operand[0] Operand[1] Operand[2] Operand[3]
0 RelatedTo | ElementOperand = 2 ElementOperand = 1 AttributeOperand = LiteralOperand
Node:HierachicalReference, | =1’
BrowsePath “.”,
Attribute:Nodeld
1 RelatedTo | AttributeOperand = AttributeOperand = AttributeOperand = LiteralOperand
Nodeld: 12:PersonType, Nodeld: Nodeld: 12:HasChild, =
BrowsePath “.”, Attribute: 12:PersonType, BrowsePath “.”,
Nodeld BrowsePath “.”, Attribute: Nodeld
Attribute: Nodeld
2 Equals AttributeOperand = LiteralOperand = ‘95
Nodeld: BaseObjectType,
BrowsePath “.”,
Attribute: Nodeld,

The results from this Query would contain the QueryDataSets shown in Table B.24.

Table B.24 — Example 7 QueryDataSets

Nodeld TypeDefinition RelativePath Value
Nodeld

12:42 (HFamilyl) PersonType “.Nodeld” 12:42 (HFamily1)
<12:HasChild> HasChild ReferenceDescription
<12:HasAnimal>12:AnimalType.Nodeld | NULL
<12:HasAnimal> HasFarmAnimal ReferenceDescription

12:48 (HFamily2) PersonType “.Nodeld” 12:48 (HFamily2)
<12:HasChild> HasChild ReferenceDescription
<12:HasAnimal>12:AnimalType.Nodeld | 12:91 (Pigl)
<12:HasAnimal> HasFarmAnimal ReferenceDescription

NOTE The RelativePath and browse name (in parentheses) is not in the QueryDataSet and is only shown here for clarity
and the TypeDefinition Nodeld would be an integer not the symbolic name that is included in the table. The value field
would in this case be the Nodeld where it was requested, but for the example the browse name is provided in parentheses
and in the case of Reference types on the browse name is provided. For the References listed in Table B.24, the value
would be a ReferenceDescription which are described in 7.30.

B.2.11 Example 8

The eighth example provides an illustration of a request in which the AddressSpace is restricted by
a Server defined View. This request is the same as in the second example which illustrates receiving
a list of disjoint Nodes and also illustrates that an array of results can be received. It is important
to note that all of the parameters and the ContentFilter are the same, only the View description
would be specified as “View1”.

Example 8: Get PersonType.LastName, AnimalType.Name where a person has a child or (a
pet is of type cat and has a feeding schedule) limited by the AddressSpace in View1.

The NodeTypeDescription parameters used in the example are described in Table B.25

OPC 10000-4: Services 193 1.05.04

Table B.25 — Example 8 NodeTypeDescription

Type Definition Node | Include QueryDataDescription

Subtypes ["Relative Path Attribute Index Range
PersonType FALSE “.12:LastName” value N/A
AnimalType TRUE “12.Name” value N/A

The corresponding ContentFilter is illustrated in Figure B.12.

Operator
Element

D Attribute or Property
Element

Q Literal Element

[PersonType] [PersonType] [HasChild] [CatType] [FeedingSchedule] [HasScheduIe]

RelatedTo RelatedTo

Figure B.12 — Example 8 filter logic tree

Table B.26 describes the elements, operators and operands used in the example. It is worth noting
that a CatType is a subtype of AnimalType.

1.05.04 194 OPC 10000-4: Services

Table B.26 — Example 8 ContentFilter

Element[] | Operator Operand[0] Operand[1] Operand[2] Operand[3]
0 Or ElementOperand=1 ElementOperand = 2
1 RelatedTo AttributeOperand = AttributeOperand = Nodeld: | AttributeOperand = LiteralOperand = ‘1’
Nodeld: 12:PersonType, Nodeld: 12:HasChild,
12:PersonType, BrowsePath “.”, BrowsePath “.”,
BrowsePath “.”, Attribute: Nodeld Attribute: Nodeld
Attribute: Nodeld
2 RelatedTo AttributeOperand = AttributeOperand = Nodeld: | AttributeOperand = LiteralOperand = ‘1’
Nodeld: 12:CatType, 12:FeedingScheduleType, Nodeld:
BrowsePath “.”, BrowsePath “.”, 12:HasSchedule,
Attribute: Nodeld Attribute: Nodeld BrowsePath “.”,
Attribute: Nodeld

The results from this query would contain the QueryDataSets shown in Table B.27. If this is
compared to the result set from example 2, the only difference is the omission of the Cat Nodes.
These Nodes are not in the View and thus are not included in the result set.

Table B.27 — Example 8 QueryDataSets

Nodeld TypeDefinition Nodeld RelativePath Value

12:30 (Jfamilyl) Persontype .12:LastName Jones

NOTE The RelativePath column and browse name (in parentheses in the Nodeld column) are not in the QueryDataSet
and are only shown here for clarity. The TypeDefinition Nodeld would be an integer not the symbolic name that is included
in the table.

B.2.12 Example 9

The ninth example provides a further illustration for a request in which the AddressSpace is
restricted by a Server defined View. This request is similar to the second example except that some
of the requested nodes are expressed in terms of a relative path. It is important to note that the
ContentFilter is the same, only the View description would be specified as “View1”.

Example 9: Get PersonType.LastName, AnimalType.Name where a person has a child or (a
petis of type cat and has a feeding schedule) limited by the AddressSpace in View1.

Table B.28 describes the NodeTypeDescription parameters used in the example.

Table B.28 — Example 9 NodeTypeDescription

Type Definition Node Include QueryDataDescription
Subtypes [Relative Path | Attribute | Index Range

PersonType FALSE “.Nodeld” value N/A
<12:HasChild>12:PersonType<12:Ha | value N/A
sAnimal>12:AnimalType.Nodeld
<12:HasChild> value N/A
<12:HasChild>12:PersonType value N/A
<12:HasAnimal>

PersonType FALSE “.12:LastName” value N/A
<12:HasAnimal>12:AnimalType. value N/A
12:Name

AnimalType TRUE “.12:name” value N/A

The corresponding ContentFilter is illustrated in Figure B.13

OPC 10000-4: Services 195 1.05.04

<:>Operator Element
D Attribute or Property
Element

O Literal Element,

[PersonType] [PersonType] [HasChild] [CatType][FeedingSchedule][HasSchedule]

Relate

Figure B.13 — Example 9 filter logic tree
Table B.29 describes the elements, operators and operands used in the example.

Table B.29 — Example 9 ContentFilter

Element[] | Operator Operand[0] Operand[1] Operand[2] Operand[3]
0 Or ElementOperand=1 ElementOperand = 2
1 RelatedTo AttributeOperand = AttributeOperand = Nodeld: | AttributeOperand = LiteralOperand = ‘1’
Nodeld: 12:PersonType, Nodeld: 12:HasChild,
12:PersonType, BrowsePath “.”, Attribute: BrowsePath “.”,
BrowsePath “.”, Nodeld Attribute: Nodeld
Attribute: Nodeld
2 RelatedTo AttributeOperand = AttributeOperand = Nodeld: | AttributeOperand = LiteralOperand = ‘1’
Nodeld: 12:CatType, 12:FeedingScheduleType, Nodeld:
BrowsePath “.”, BrowsePath “.”, Attribute: 12:HasSchedule,
Attribute: Nodeld Nodeld BrowsePath “.”,
Attribute: Nodeld

The results from this Query would contain the QueryDataSets shown in Table B.30. If this is
compared to the result set from example 2, the Pet Nodes are included in the list, even though they
are outside of the View. This is possible since the name referenced via the relative path and the
root Node is in the View.

Table B.30 — Example 9 QueryDataSets

Nodeld TypeDefinition Nodeld RelativePath Value
12:30 (JIfamilyl) PersonType . 12:LastName Jones
<12:HasAnimal>12:AnimalType. Rosemary
12:Name
<12:HasAnimal>12:AnimalType. Basil
12:Name

NOTE The RelativePath column and browse name (in parentheses in the Nodeld column) are not in the QueryDataSet
and are only shown here for clarity. The TypeDefinition Nodeld would be an integer not the symbolic name that is included
in the table.

	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviated terms and conventions
	3.1 Terms and definitions
	3.2 Abbreviated terms
	3.3 Conventions for Service definitions

	4 Overview
	4.1 Service Set model
	4.2 Request/response Service procedures

	5 Service Sets
	5.1 General
	5.2 Service request and response header
	5.3 Service results
	5.4 Locale Negotiation
	5.5 Discovery Service Set
	5.5.1 Overview
	5.5.2 FindServers
	5.5.2.1 Description
	5.5.2.2 Parameters
	5.5.2.3 Service results

	5.5.3 FindServersOnNetwork
	5.5.3.1 Description
	5.5.3.2 Parameters
	5.5.3.3 Service results

	5.5.4 GetEndpoints
	5.5.4.1 Description
	5.5.4.2 Parameters
	5.5.4.3 Service Results

	5.5.5 RegisterServer
	5.5.5.1 Description
	5.5.5.2 Parameters
	5.5.5.3 Service Results

	5.5.6 RegisterServer2
	5.5.6.1 Description
	5.5.6.2 Parameters
	5.5.6.3 Service results
	5.5.6.4 StatusCodes

	5.6 SecureChannel Service Set
	5.6.1 Overview
	5.6.2 OpenSecureChannel
	5.6.2.1 Description
	5.6.2.2 Parameters
	5.6.2.3 Service results

	5.6.3 CloseSecureChannel
	5.6.3.1 Description
	5.6.3.2 Parameters
	5.6.3.3 Service results

	5.7 Session Service Set
	5.7.1 Overview
	5.7.2 CreateSession
	5.7.2.1 Description
	5.7.2.2 Parameters
	5.7.2.3 Service results

	5.7.3 ActivateSession
	5.7.3.1 Description
	5.7.3.2 Parameters
	5.7.3.3 Service results

	5.7.4 CloseSession
	5.7.4.1 Description
	5.7.4.2 Parameters
	5.7.4.3 Service results

	5.7.5 Cancel
	5.7.5.1 Description
	5.7.5.2 Parameters
	5.7.5.3 Service results

	5.8 NodeManagement Service Set
	5.8.1 Overview
	5.8.2 AddNodes
	5.8.2.1 Description
	5.8.2.2 Parameters
	5.8.2.3 Service results
	5.8.2.4 StatusCodes

	5.8.3 AddReferences
	5.8.3.1 Description
	5.8.3.2 Parameters
	5.8.3.3 Service results
	5.8.3.4 StatusCodes

	5.8.4 DeleteNodes
	5.8.4.1 Description
	5.8.4.2 Parameters
	5.8.4.3 Service results
	5.8.4.4 StatusCodes

	5.8.5 DeleteReferences
	5.8.5.1 Description
	5.8.5.2 Service results
	5.8.5.3 StatusCodes

	5.9 View Service Set
	5.9.1 Overview
	5.9.2 Browse
	5.9.2.1 Description
	5.9.2.2 Parameters
	5.9.2.3 Service results
	5.9.2.4 StatusCodes

	5.9.3 BrowseNext
	5.9.3.1 Description
	5.9.3.2 Parameters
	5.9.3.3 Service results
	5.9.3.4 StatusCodes

	5.9.4 TranslateBrowsePathsToNodeIds
	5.9.4.1 Description
	5.9.4.2 Parameters
	5.9.4.3 Service results
	5.9.4.4 StatusCodes

	5.9.5 RegisterNodes
	5.9.5.1 Description
	5.9.5.2 Parameters
	5.9.5.3 Service results

	5.9.6 UnregisterNodes
	5.9.6.1 Description
	5.9.6.2 Parameters
	5.9.6.3 Service results

	5.10 Query Service Set
	5.10.1 Overview
	5.10.2 Querying Views
	5.10.3 QueryFirst
	5.10.3.1 Description
	5.10.3.2 Service results
	5.10.3.3 StatusCodes

	5.10.4 QueryNext
	5.10.4.1 Descriptions
	5.10.4.2 Parameters
	5.10.4.3 Service results

	5.11 Attribute Service Set
	5.11.1 Overview
	5.11.2 Read
	5.11.2.1 Description
	5.11.2.2 Parameters
	5.11.2.3 Service results
	5.11.2.4 StatusCodes

	5.11.3 HistoryRead
	5.11.3.1 Description
	5.11.3.2 Parameters
	5.11.3.3 Service results
	5.11.3.4 StatusCodes

	5.11.4 Write
	5.11.4.1 Description
	5.11.4.2 Parameters
	5.11.4.3 Service results
	5.11.4.4 StatusCodes

	5.11.5 HistoryUpdate
	5.11.5.1 Description
	5.11.5.2 Parameters
	5.11.5.3 Service results
	5.11.5.4 StatusCodes

	5.12 Method Service Set
	5.12.1 Overview
	5.12.2 Call
	5.12.2.1 Description
	5.12.2.2 Parameters
	5.12.2.3 Service results
	5.12.2.4 StatusCodes

	5.13 MonitoredItem Service Set
	5.13.1 MonitoredItem model
	5.13.1.1 Overview
	5.13.1.2 Sampling interval
	5.13.1.3 Monitoring mode
	5.13.1.4 Filter
	5.13.1.5 Queue parameters
	5.13.1.6 Triggering model

	5.13.2 CreateMonitoredItems
	5.13.2.1 Description
	5.13.2.2 Parameters
	5.13.2.3 Service results
	5.13.2.4 StatusCodes

	5.13.3 ModifyMonitoredItems
	5.13.3.1 Description
	5.13.3.2 Parameters
	5.13.3.3 Service results
	5.13.3.4 StatusCodes

	5.13.4 SetMonitoringMode
	5.13.4.1 Description
	5.13.4.2 Parameters
	5.13.4.3 Service results
	5.13.4.4 StatusCodes

	5.13.5 SetTriggering
	5.13.5.1 Description
	5.13.5.2 Parameters
	5.13.5.3 Service results
	5.13.5.4 StatusCodes

	5.13.6 DeleteMonitoredItems
	5.13.6.1 Description
	5.13.6.2 Parameters
	5.13.6.3 Service results
	5.13.6.4 StatusCodes

	5.14 Subscription Service Set
	5.14.1 Subscription model
	5.14.1.1 Description
	5.14.1.2 State table
	5.14.1.3 State variables and parameters
	5.14.1.4 Functions

	5.14.2 CreateSubscription
	5.14.2.1 Description
	5.14.2.2 Parameters
	5.14.2.3 Service results

	5.14.3 ModifySubscription
	5.14.3.1 Description
	5.14.3.2 Parameters
	5.14.3.3 Service results

	5.14.4 SetPublishingMode
	5.14.4.1 Description
	5.14.4.2 Parameters
	5.14.4.3 Service results
	5.14.4.4 StatusCodes

	5.14.5 Publish
	5.14.5.1 Description
	5.14.5.2 Parameters
	5.14.5.3 Service results
	5.14.5.4 StatusCodes

	5.14.6 Republish
	5.14.6.1 Description
	5.14.6.2 Parameters
	5.14.6.3 Service results

	5.14.7 TransferSubscriptions
	5.14.7.1 Description
	5.14.7.2 Parameters
	5.14.7.3 Service results
	5.14.7.4 StatusCodes

	5.14.8 DeleteSubscriptions
	5.14.8.1 Description
	5.14.8.2 Parameters
	5.14.8.3 Service results
	5.14.8.4 StatusCodes

	6 Service behaviours
	6.1 Security
	6.1.1 Overview
	6.1.2 Obtaining and installing an Application Instance Certificate
	6.1.3 Determining if a Certificate is trusted
	6.1.4 Creating a SecureChannel
	6.1.5 Creating a Session
	6.1.6 Impersonating a User
	6.1.7 Continuous security checks

	6.2 Authorization Services
	6.2.1 Overview
	6.2.2 Indirect handshake with an Identity Provider
	6.2.3 Direct handshake with an Identity Provider

	6.3 Session-less Service invocation
	6.3.1 Description
	6.3.2 Parameters
	6.3.3 Service results

	6.4 Software Certificates
	6.5 Auditing
	6.5.1 Overview
	6.5.2 General audit logs
	6.5.3 General audit Events
	6.5.4 Auditing for Discovery Service Set
	6.5.5 Auditing for SecureChannel Service Set
	6.5.6 Auditing for Session Service Set
	6.5.7 Auditing for NodeManagement Service Set
	6.5.8 Auditing for Attribute Service Set
	6.5.9 Auditing for Method Service Set
	6.5.10 Auditing for View, Query, MonitoredItem and Subscription Service Set

	6.6 Redundancy
	6.6.1 Redundancy overview
	6.6.2 Server Redundancy
	6.6.2.1 General
	6.6.2.2 RedundantServerSet Requirements
	6.6.2.3 Transparent Redundancy
	6.6.2.3.1.1 Client behaviour
	6.6.2.3.1.2 Server requirements

	6.6.2.4 Non-transparent Redundancy
	6.6.2.4.1 Overview
	6.6.2.4.2 ServiceLevel
	6.6.2.4.3 Load balancing
	6.6.2.4.4 Server Failover modes
	6.6.2.4.5 Client Failover behaviour
	6.6.2.4.5.1 General
	6.6.2.4.5.2 Cold
	6.6.2.4.5.3 Warm
	6.6.2.4.5.4 Hot
	6.6.2.4.5.5 HotAndMirrored

	6.6.2.5 Hiding Failover with a Server Proxy

	6.6.3 Client Redundancy
	6.6.4 Network Redundancy
	6.6.4.1 Overview
	6.6.4.2 Transparent
	6.6.4.3 Non-Transparent

	6.6.5 Manually Forcing Failover

	6.7 Re-establishing connections
	6.8 Durable Subscriptions

	7 Common parameter type definitions
	7.1 AdditionalParametersType
	7.2 ApplicationDescription
	7.3 ApplicationInstanceCertificate
	7.4 ApplicationType
	7.5 BrowseDirection
	7.6 BrowseResult
	7.7 ContentFilter
	7.7.1 ContentFilter structure
	7.7.2 ContentFilterResult
	7.7.3 FilterOperator
	7.7.4 FilterOperand parameters
	7.7.4.1 Overview
	7.7.4.2 ElementOperand
	7.7.4.3 LiteralOperand
	7.7.4.4 AttributeOperand
	7.7.4.5 SimpleAttributeOperand

	7.8 Counter
	7.9 ContinuationPoint
	7.10 DataChangeTrigger
	7.11 DataValue
	7.11.1 General
	7.11.2 PicoSeconds
	7.11.3 SourceTimestamp
	7.11.4 ServerTimestamp
	7.11.5 StatusCode assigned to a value

	7.12 DiagnosticInfo
	7.13 DiscoveryConfiguration parameters
	7.13.1 Overview
	7.13.2 MdnsDiscoveryConfiguration

	7.14 EndpointDescription
	7.15 EphemeralKeyType
	7.16 ExpandedNodeId
	7.17 ExtensibleParameter
	7.18 Index
	7.19 IntegerId
	7.20 MessageSecurityMode
	7.21 MonitoringParameters
	7.22 MonitoringFilter parameters
	7.22.1 Overview
	7.22.2 DataChangeFilter
	7.22.3 EventFilter
	7.22.4 AggregateFilter

	7.23 MonitoringMode
	7.24 NodeAttributes parameters
	7.24.1 Overview
	7.24.2 ObjectAttributes parameter
	7.24.3 VariableAttributes parameter
	7.24.4 MethodAttributes parameter
	7.24.5 ObjectTypeAttributes parameter
	7.24.6 VariableTypeAttributes parameter
	7.24.7 ReferenceTypeAttributes parameter
	7.24.8 DataTypeAttributes parameter
	7.24.9 ViewAttributes parameter
	7.24.10 GenericAttributes parameter

	7.25 NotificationData parameters
	7.25.1 Overview
	7.25.2 DataChangeNotification parameter
	7.25.3 EventNotificationList parameter
	7.25.4 StatusChangeNotification parameter

	7.26 NotificationMessage
	7.27 NumericRange
	7.28 QueryDataSet
	7.29 ReadValueId
	7.30 ReferenceDescription
	7.31 RelativePath
	7.32 RegisteredServer
	7.33 RequestHeader
	7.34 ResponseHeader
	7.35 ServiceFault
	7.36 SessionAuthenticationToken
	7.37 SignatureData
	7.38 SignedSoftwareCertificate
	7.39 StatusCode
	7.39.1 General
	7.39.2 Common StatusCodes

	7.40 TimestampsToReturn
	7.41 UserIdentityToken parameters
	7.41.1 Overview
	7.41.2 Token Encryption and Proof of Possession
	7.41.2.1 Overview
	7.41.2.2 Legacy Encrypted Token Secret Format
	7.41.2.3 EncryptedSecret Format
	7.41.2.4 RsaEncryptedSecret DataType
	7.41.2.5 EccEncryptedSecret DataType

	7.41.3 AnonymousIdentityToken
	7.41.4 UserNameIdentityToken
	7.41.5 X509IdentityTokens
	7.41.6 IssuedIdentityToken

	7.42 UserTokenPolicy
	7.43 UserTokenType
	7.44 VersionTime
	7.45 ViewDescription

	Annex A (informative) BNF definitions
	A.1 Overview over BNF
	A.2 BNF of RelativePath
	A.3 BNF of NumericRange

	Annex B (informative) ContentFilter and Query examples
	B.1 Simple ContentFilter examples
	B.1.1 Overview
	B.1.2 Example 1
	B.1.3 Example 2

	B.2 Complex Examples of Query Filters
	B.2.1 Overview
	B.2.2 Used type model
	B.2.3 Example Notes
	B.2.4 Example 1
	B.2.5 Example 2
	B.2.6 Example 3
	B.2.7 Example 4
	B.2.8 Example 5
	B.2.9 Example 6
	B.2.10 Example 7
	B.2.11 Example 8
	B.2.12 Example 9

